

Lesoshoppe.com

CORIO[™] Refrigerated and Heating Circulators

CORIO – the laboratory circulators

Refrigerated Circulators	8
Accessories	16

Heating Circulators	22
Immersion Circulators	24
Open Heating Bath Circulators	26
Heating Circulators	30
Accessories	36

Technical Specifications46

The CORIO advantages at a glance.

CORIO. The best for your laboratory!

Circulators are an important part of daily work in many laboratories of research institutions and industrial companies worldwide. The JULABO CORIO circulators were developed with pioneering technologies for these laboratories and are manufactured to the highest quality standards in Germany. With the CORIO series, we offer our customers the best price-performance ratio in the basic range of circulator technology. Equipped with all essential core functions, the CORIO circulators are optimized for simple, daily routine work.

Intelligently designed to the core. The simple and modern design of the CORIO circulators allows for easy and time-saving operation and provides quick access to all relevant functions. Thanks to the proven JULABO premium quality, all models meet the highest standards in terms of precision, reliability, and functionality. Other features such as the integrated timer or the bright, easy-to-read display complete the intelligent product design. Flexible all-rounder.

Universal bath attachment clamp for custom containers, bath tanks in various sizes and designs as well as powerful cooling machines make the CORIO a flexible all-rounder in everyday laboratory work. With a wide selection of accessories, all CORIO devices can be adapted to customer-specific applications in a modular and individual way.

The basic model CORIO C is particularly suitable for precise, internal standard temperature control tasks. Thanks to the powerful integrated pump, the CORIO CD and CP can also be used to easily and safely control external applications – in a wide working temperature range from -50 °C to +200 °C. With additional features such as the 3-point Absolute Temperature Calibration (ATC3), the CORIO CP guarantees reliable compensation of temperature deviations even when used in larger baths. In addition, the CORIO CP can also be integrated into complex process structures thanks to the RS232 interface.

Refrigerated Circulators

The Refrigerated / Heating Circulators of the generation CORIO provide more robustness, more reliability, and more advantages. They are ideal for all standard tasks and routine work in your laboratory.

CORIO CD Refrigerated / Heating Circulators

for working temperatures from -40 °C to +150 °C

Refrigerated / Heating Circulators of the CORIO series distinguish themselves with a great price-performance ratio. They are ideal for all standard tasks and routine work in laboratories and industry.

- Models for internal and external applications
- Bright, white, easy-to-read display
- Very quiet
- Easy change-over from internal to external circulation and vice versa
- External pump connections (M16×1)
- USB interface
- Space-saving cooling coil design provides more usable space in the bath tank
- Bath lid and drain tap included
- Removable ventilation grid
- Refrigeration unit without side vents
- Class III (FL) according to DIN 12876-1

To adapt the CORIO Refrigerated / Heating Circulator to your individual application, we offer a comprehensive range of accessories (bath fluid, tubing, adapter and more).

Applications

Temperature control of samples in a circulator bath or temperature control of an external application. For example measuring cells, refractometers, polarimeters, photometers, viscometers, fermenters, electrophoresis chambers, chromatography columns, rotary evaporators, rheometers and more.

Maintenance. Friendly.

The magnetic front grid can be removed easily for user-friendly cleaning and maintenance. Without tools.

....

• • • •		••••
•		•
• • •	-	• • •
• • •		0 0 0 0
•		•
· · · ·		• • • •

	D-2001			D-201F			.D-300F	
Order No.	9 012 701		Order No.	9 012 702	0	Order No.	9 012 703	•
Working temperature range °C	-20 +15	0	Working temperature range °C	-20 +15	0	Working temperature range °C	-25 +15)
Temperature stability °C	± 0.03		Temperature stability °C	± 0.03	0	Temperature stability °C	± 0.03	•
Heating capacity kW	2		Heating capacity kW	2	•	Heating capacity kW	2	•
	+20 °C	0 °C		+20 °C	0 °C		+20 °C	0 °C
Cooling capacity kW	0.22	0.17	Cooling capacity kW	0.22	0.16	Cooling capacity kW	0.31	0.28
(Bath fluid: Ethanol)	-10 °C	-20 °C	(Bath fluid: Ethanol)	-10 °C	-20 °C	(Bath fluid: Ethanol)	-10 °C	-20 °C
	0.13	0.06		0.12	0.06		0.2	0.11
Pump capacity	l/min	bar	Pump capacity	l/min	bar	Pump capacity	l/min	bar
Flow rate / Pressure	15	0.35	Flow rate / Pressure	15	0.35	Flow rate / Pressure	15	0.35
Bath opening / Bath depth cm	W × L / D 13 × 15 / 1	5	Bath opening / Bath depth cm	W × L / D 13 × 15 / 1	5	Bath opening / Bath depth cm	W × L / D 13 × 15 / 15	5
Filling volume liters	3 4		Filling volume liters	3 4		Filling volume liters	3 4	•
Dimensions cm	W × L × H 23 × 39 ×	65	Dimensions cm	$W \times L \times H$ 44 × 41 × 4	14	Dimensions cm	$W \times L \times H$ 24 × 42 × 6	6

Heat-up time Bath fluid: Thermal

Cool-down time Bath fluid: Ethanol

٠

•

A STATE

.

ł

•

• • • •	Order No.	9 012 70	UГ)4		Order No.	9 012 70)5	
•	Working temperature range °C	-35 +	150		Working temperature range °C	-40 +	150	
•	Temperature stability °C	± 0.03			Temperature stability °C	± 0.03		0
:	Heating capacity kW	2			Heating capacity kW	2		
•		+20 °C	0 °C	-10 °C		+20 °C	0 °C	-10 °C
• • • •	Cooling capacity kW (Bath fluid: Ethanol)	0.6 -20 °C	0.53 -30 °C	0.35 -40 °C	Cooling capacity kW (Bath fluid: Ethanol)	0.6 -20 °C	0.5 -30 °C	0.35 -40 °C
•		0.22	0.1	-		0.2	0.07	0.01
:	Pump capacity Flow rate / Pressure	l/min 15	bar 0.35		Pump capacity Flow rate / Pressure	l/min 15	bar 0.35	
	Bath opening / Bath depth cm	W × L / D 22 × 15 /	15		Bath opening / Bath depth cm	W × L / D 22 × 15 /	20	
•	Filling volume liters	5 7.5			Filling volume liters	8 10		
• • • •	Dimensions cm	W × L × 1 33 × 47 ×	H × 69		Dimensions cm	$W \times L \times 36 \times 46 \times 10^{-1}$	H < 74	

Heat-up time Bath fluid: Thermal

Heat-up time Bath fluid: Thermal

Cool-down time Bath fluid: Ethanol

Cool-down time Bath fluid: Ethanol

• • • • •	• • • • • • • • • • • • • • • • • • •	•
•	0	•••••
•	· 1.	•
	22	•
		•
****	• • • • • • • •	· • • • •

	CD-90	OF		CORIO	CD-10	000F		CORIO	CD-10	01F	·
Order No.	9 012 70	06		Order No.	9 012 7	07		Order No.	9 012 70	08	
Working temperature range °C	-38 +	150		Working temperature range °C	-40 +	150		Working temperature range °C	-38 +	100	
Temperature stability °C	± 0.03			Temperature stability °C	± 0.03			Temperature stability °C	± 0.03		
Heating capacity kW	2			Heating capacity kW	2			Heating capacity kW	2		
	+20 °C	0 °C	-10 °C		+20 °C	0 °C	-10 °C		+20 °C	0 °C	-10 °C
Cooling capacity kW	0.9	0.8	0.55	Cooling capacity kW	1	0.9	0.73	Cooling capacity kW	1	0.9	0.63
(Bath fluid: Ethanol)	-20 °C	-30 °C	-40 °C	(Bath fluid: Ethanol)	-20 °C	-30 °C	-40 °C	(Bath fluid: Ethanol)	-20 °C	-30 °C	-40 °C
D D	0.35	0.15	0.02		0.5	0.32	0.15		0.35	0.13	-
Pump capacity	l/min	bar		Pump capacity	l/min	bar		Pump capacity	l/min	bar	
Flow rate / Pressure	15	0.35		Flow rate / Pressure	15	0.35		Flow rate / Pressure	15	0.35	
Bath opening / Bath depth cm	W × L / D 26 × 35 /) / 20		Bath opening / Bath depth cm	W × L / [18 × 13) / 15		Bath opening / Bath depth cm	W × L / C 35 × 41 /) / 30	0 0 0 0
Filling volume liters	21 30)		Filling volume liters	5 7.5			Filling volume liters	42 56		
Dimensions cm	W × L × 39 × 62	H × 75		Dimensions cm	W × L × 42 × 49	H × 70		Dimensions cm	$W \times L \times 45 \times 64$	H × 95	0 0 0 0 0

Saves energy.

CORIO models come with various modes for the refrigeration unit: permanently on, permanently off, or on as refrigeration is needed. CORIO CD-600F to CORIO CD-1001 additionally contain a continuous automatic adjustment of the cooling capacity at the operating point to minimize the power consumption and the heat waste.

CORIO CP Refrigerated/Heating Circulators

for working temperatures from -50 °C to +200 °C

Refrigerated Circulators from the CORIO CP range are suitable for applications with a temperature range from -50°C to +200°C. The enhanced pump performance ensures they are suitable for easy temperature control tasks in combination with external applications.

- Models for internal and external applications
- Bright, white, easy-to-read display
- Very quiet
- Easy change-over from internal to external circulation and vice versa
- External pump connections (M16 \times 1)
- pump capacity, infinitely adjustable
- USB interface
- RS232 interface
- Space-saving cooling coil design provides more usable space in the bath tank
- Bath lid and drain tap included
- Removable ventilation grid
- Refrigeration unit without side vents
- System for low liquid level
- Class III (FL) according to DIN 12876-1

To adapt the CORIO Refrigerated / Heating Circulator to your individual application, we offer a comprehensive range of accessories (bath fluid, tubing, adapter and more)

Heat-up time Bath fluid: Thermal

Heat-up time Bath fluid: Thermal

Cool-down time Bath fluid: Ethanol

Cool-down time Bath fluid: Ethanol

212

CP-201F

•		•	and the second se
•			and the second se
		•	
•		•	
•		•	Contraction of the Article of the Ar
			and the second se
			and the second se
		•	Concept and the second s
•			
			and the second se
			1.00
			and the second se
•			A COLUMN TWO IS NOT
			And a second sec
		•	And an and a second
		•	All statements of the second s
		•	COLUMN STATE
			**
			· · · · · · · · · · · · · · · · · · ·

_			
	•		
	•	and the second s	
A 1 1 1 A 1	•		
	•		
	•		
	0		

	CP-90	0F (NEW
Order No.	9 013 70	6	
Working temperature range °C	-38 +2	200	
Temperature stability °C	± 0.03		
Heating capacity kW	2		
	+20 °C	0 °C	-10 °C
Cooling capacity kW	0.9	0.8	0.52
(Bath fluid: Ethanol)	-20 °C	-30 °C	-40 °C
	0.31	0.11	-
Pump capacity	l/min	bar	
Flow rate / Pressure	8 27	0.1 0).7
Bath opening / Bath	$W \times L / D$		
depth cm	26 × 35 /	20	
Filling volume liters	21 30		
Dimensions cm	W × L × I 39 × 62 >	H < 75	

	P-300F	NEW
Order No.	9 013 703	
Working temperature range °C	-25 +200)
Temperature stability °C	± 0.03	
Heating capacity kW	2	
	+20 °C	0 °C
Cooling capacity kW (Bath fluid: Ethanol)	0.3	0.27
	-10 °C	-20 °C
	0.19	0.08
Pump capacity	0.19 l/min	0.08 bar
Pump capacity Flow rate / Pressure	0.19 l/min 8 27	0.08 bar 0.1 0.7
Pump capacity Flow rate / Pressure Bath opening / Bath depth cm	0.19 I/min 8 27 W × L / D 13 × 15 / 15	0.08 bar 0.1 0.7
Pump capacity Flow rate / Pressure Bath opening / Bath depth cm Filling volume liters	0.19 I/min 8 27 W × L / D 13 × 15 / 15 3 4	0.08 bar 0.1 0.7

	CP-10	00F (NEW
Order No.	9 013 70	7	
Working temperature range °C	-50 +2	200	
Temperature stability °C	± 0.03		
Heating capacity kW	2		
	+20 °C	0 °C	-10 °C
Cooling capacity kW	1	0.9	0.73
(Bath fluid: Ethanol)	-20 °C	-30 °C	-40 °C
	0.5	0.3	0.13
Pump capacity	l/min	bar	
Flow rate / Pressure	8 27	0.1 0).7
Bath opening / Bath	$W \times L / D$		
depth cm	18 × 13 /	15	
Filling volume liters	5 7.5		
Dimensions cm	$W \times L \times H$	+ ~ 70	

Order No.	9 013 70	4	
Working temperature range °C	-35 +2	200	
Temperature stability °C	± 0.03		
Heating capacity kW	2		
	+20 °C	0 °C	-10 °C
Cooling capacity kW	0.6	0.5	0.33
(Bath fluid: Ethanol)	-20 °C	-30 °C	-40 °C
	0.2	0.07	-
Pump capacity	l/min	bar	
Flow rate / Pressure	8 27	0.1 0	.7
Bath opening / Bath depth cm	W × L / D 22 × 15 /	15	
Filling volume liters	5 7.5		
Dimensions cm	W × L × H 33 × 47 ×	l : 69	

NEW Order No. 9 013 708 Working temperature -38 ... +100 range °C Temperature stability °C ± 0.03

Heating capacity kW	2			
Cooling capacity kW (Bath fluid: Ethanol)	+20 °C	0 °C	-10 °C	
	1	0.9	0.6	
	-20 °C	-30 °C	-40 °C	
	0.6	0.12	-	
Pump capacity	l/min	bar		
Flow rate / Pressure	8 27	0.1 0	.7	
Bath opening / Bath	$W \times L / D$			
depth cm	35 × 41 / 30			
Filling volume liters	42 56			
Dimensions cm	W × L × H 45 × 64 >	H < 95		

JULABO Thermal Bath Fluids

JULABO Thermal bath fluids have been carefully chosen following long term testing. They are highly suitable for all of your temperature control applications guaranteeing safe and reliable operation. Choosing the proper bath fluid is critical for high performance temperature control. The viscosity and heat transfer characteristics of the Thermal fluids are specifically selected for use with JULABO temperature control instruments.

Advantages

- Broad temperature ranges
- Low viscosity
- High stability
- Good thermal conductivity
- Almost odorless
- Long life

Makes routine laboratory work easier.

JULABO Thermal bath fluids are delivered in containers with a handy drain tap.

Tidy.

The special drain tap for easy draining of bath fluids without tools.

Thermal G	La State - C
Order No. 5 liters	8 940 125
Order No. 10 liters	8 940 124
Working temperature range °C	-30 +80
Flash point °C	not applicable
Fire point °C	not applicable
Viscosity, (kinematic at +20 °C) mm ² /s	4.07
Density (at +20 $^{\circ}$ C) g/cm ³	1.08
Pour point °C	-70
Boiling point °C	+108
Ignition temperature °C	+430
Color	light yellow

	-			
•			-	
		AND		
•••••		and the second s	•••• ^{•••}	•

Thermal H5	
Order No. 5 liters	8 940 107
Order No. 10 liters	8 940 106
Working temperature range °C	-50 +105
Flash point °C	+124
Fire point °C	+142
Viscosity, (kinematic at +20 °C) mm ² /s	5.66
Density (at +20 °C) g/cm ³	0.92
Pour point °C	-100
Boiling point °C	+288
Ignition temperature °C	+350
Color	clear

Thermal H10				
Order No. 5 liters	8 940 115			
Order No. 10 liters	8 940 114			
Working temperature range °C	-20 +180			
Flash point °C	>+170			
Fire point °C	+220			
Viscosity, (kinematic at +20 °C) mm²/s	10.8			
Density (at +20 °C) g/cm ³	0.94			
Pour point °C	<-60			
Boiling point °C	+288			
Ignition temperature °C	+370			
Color	clear			

Thermal H20	S S
Order No. 5 liters	8 940 109
Order No. 10 liters	8 940 108
Working temperature range °C	0 +220
Flash point °C	+230
Fire point °C	+264
Viscosity, (kinematic at +20 °C) mm ² /s	22.3
Density (at +20 °C) g/cm ³	0.95
Pour point °C	-70
Boiling point °C	+424
Ignition temperature °C	+385
Color	light brown

JULABO Thermal bath fluids based on silicone ...

... are chemically inert substances which do not affect metals like iron, copper, zinc, aluminum, chrome or nickel. Compared to other fluids, JULABO Thermal fluids have an extraordinarily low electrical conductivity. When properly stored, the fluids will last for 12 months and longer as they are not susceptible to climatic influences.

JULABO Thermal bath fluids based on water-glycol ...

... (monoethyleneglycol with anti-corrosion additives) have excellent thermal characteristics and a low viscosity. In addition, they provide anti-freeze protection, i.e. they can be applied at temperatures below the freezing point of water.

More information on JULABO Thermal bath fluids ...

... in our brochure ,Thermal Bath Fluids' at www.julabo.com.

Refrigerated Circulators Accessories

Water protective media to prevent formation of algae and bacteria and Descaling agent

Order No.	Description	Suitable for
8 940 006	Aqua Stabil, 6 bottles 100 ml each	C, CD, CP
8 940 012	Aqua Stabil, 12 bottles 100 ml each	C, CD, CP
9 940 200	Descaling agent 1 Liter	C, CD, CP

Hollow balls to reduce heat loss, evaporation, oxygen input, odors, action of light

Order No.	Description	Suitable for	1. A. C. A. C. A.
8 970 010	Hollow balls, Polypropylene [®] , 20 mm Ø, 1000 pcs (up to +100 °C, for water only)	C, CD, CP	

Heat exchangers / Cooling installations

Order No.		Suitable for
9 970 240	Bath cover with built-in heat exchanger	CD-200F, CP-200F, CD-201F, CP-201F, CD-300F, CP-300F
9 970 242	Bath cover with built-in heat exchanger	CD-600F, CP-600F, CD-601F, CP-601F, CD-1000F, CP-1000F

CR® tubing (-30 °C ... +120 °C)

Order No. Description	Suitable for	A
8 930 008 1 m, 8 mm inner dia.	CD, CP	
8 930 010 1 m, 10 mm inner dia	CD, CP	
8 930 012 1 m, 12 mm inner dia	CD, CP	

Viton[®] tubing (-35 °C ... +200 °C)

Order No.	Description	Suitable for	1. 1. C. 1. C.
8 930 108	1 m, 8 mm inner dia.	CD, CP	
8 930 110	1 m, 10 mm inner dia.	CD, CP	
8 930 112	1 m, 12 mm inner dia.	CD, CP	

PTFE tubing (-60 °C ... +180 °C)

Bestell-Nr.	Bezeichnung	Einsetzbar für	
8 930 140	PTFE tubing 8 mm ID x 10 mm OD per meter	CD, CP	
8 930 142	PTFE tubing 12 mm ID x 14 mm OD per meter	CD, CP	

Tubing insulation (-50 °C ... +100 °C)

Order No.	Description	Suitable for	
8 930 410	1 m, for tubing 8 - 10 mm inner dia.	CR [®] / Viton [®] tubing	
8 930 412	1 m, for tubing 12 mm inner dia.	CR [®] / Viton [®] tubing	

66

Tube clamps

Order No.	Description	Suitable for
8 970 480	2 Tube clamps, size 1	CR [®] / Viton [®] tubing 8 mm inner dia.
8 970 481	2 Tube clamps, size 2	CR [®] / Viton [®] tubing 10 - 12 mm inner dia.

Metal tubing flexible, insulated (-50 °C ... +200 °C)

Order No.	Description	Suitable for
8 930 220	0.5 m Metal tubing, 2 fittings M16x1 female	CD, CP
8 930 221	1.0 m Metal tubing, 2 fittings M16x1 female	CD, CP
8 930 222	1.5 m Metal tubing, 2 fittings M16x1 female	CD, CP
8 930 223	3.0 m Metal tubing, 2 fittings M16x1 female	CD, CP

Adapters and connectors

Order No.	Description	Suitable for	
8 970 446	2 Barbed fittings for tubing 8 mm inner dia.	CD, CP	
8 970 447	2 Barbed fittings for tubing 10 mm inner dia	CD, CP	
8 970 445	2 Barbed fittings for tubing 12 mm inner dia.	CD, CP	
8 970 443	1 Adapter M16x1 male to M16x1 male	CD, CP	
8 970 490	2 Collar nuts M16x1 female	CD, CP	
8 970 442	2 Elbow fittings 90°, M16x1 female/male	CD, CP	
8 890 004	2 Adapters M16x1 female to NPT 1/4" male	CD, CP	
8 890 005	2 Adapters M16x1 female to NPT 1/4" female	CD, CP	
8 890 006	2 Adapters M16x1 female to NPT 3/8" male	CD, CP	
8 890 007	2 Adapters M16x1 female to NPT 3/8" female	CD, CP	
8 890 008	2 Adapters M16x1 female to NPT 1/2" male	CD, CP	
8 890 009	2 Adapters M16x1 female to NPT 1/2" female	CD, CP	
8 890 010	2 Adapters M16x1 male to NPT 1/4" female	CD, CP	
8 891 008	1 Adapter M16x1 male to BSP 1/2"female	CD, CP	
8 891 009	1 Adapter M16x1 male to BSP 3/4" female	CD, CP	
8 890 011	2 Adapters M16x1 female to tube 1/4" male	CD, CP	
8 890 012	2 Adapters M16x1 female to tube 3/8" male	CD, CP	
8 890 013	2 Adapters M16x1 female to tube 1/2" male	CD, CP	
8 890 024	2 Adapters M16x1 female to M16x1 female	CD, CP	

Shut-off valves for loop circuit

Order No.	Description	Suitable for	
8 970 457	Shut-off valve (-30 °C +200 °C), M16x1	CD, CP	
8 970 456	Shut-off valve (-10 °C +100 °C), M16x1	CD, CP	

Refrigerated Circulators Accessories

Twin distributing adapters with barbed fittings

Order No.	Description	Suitable for
8 970 470	Twin distributing adapter with barbed fittings	Tubing 8 mm inner dia.
8 970 471	Twin distributing adapter with barbed fittings	Tubing 12 mm inner dia.
8 970 472	Twin distributing adapter with barbed fittings	Tubing 10 mm inner dia.
8 970 473	Twin distributing adapter M16x1 female to 2 x M16x1 male	CD, CP

Test tube racks made out of stainless steel, up to +150 $^{\circ}\mathrm{C}$

Order No.	Description	Suitable for
9 970 320	Test tube rack for 30 tubes 100 x 17 mm dia.	CD-200F, CP-200F, CD-201F, CP-201F CD-300F, CP-300F
9 970 321	Test tube rack for 42 tubes 75 x 12 / 13 mm dia.	CD-200F, CP-200F, CD-201F, CP-201F CD-300F, CP-300F
9 970 322	Test tube rack for 42 tubes 40 x 10 / 11 mm dia.	CD-200F, CP-200F, CD-201F, CP-201F CD-300F, CP-300F
9 970 323	Test tube rack for 10 falcon tubes 50 ml	CD-200F, CP-200F, CD-201F, CP-201F CD-300F, CP-300F

Immersion-height adjustable platforms

Order No.	Description	Suitable for	A
9 970 506	Immersion-height adjustable platform	CD-900F, CP-900F	

Accessories Beer Forcing Test

Order No.	Description	Suitable for
9 970 247	Transparent bath cover, plexiglas, temperature range -10 °C \dots +80 °C	CD1001F, CP-1001F
9 970 337	Basket for 20 bottles 0.33 l / 0.5 l, stainless steel	CD1001F, CP-1001F

Software and hardware for instrument control, data recording and visualization, interfaces

Order No.	Description	Suitable for	-
8 901 102	EasyTEMP Software (free of charge at www.julabo.com)	CD, CP	
8 901 105	EasyTEMP Professional Software, incl. USB-Dongle	CD, CP	
9 900 110	USB interface cable 2 m, type A-B	CD, CP	
9 900 112	USB 2.0 Repeater extension cable, length $= 5 \text{ m}$	CD, CP	
9 900 114	USB 2.0 Repeater extension cable, length $=$ 10 m	CD, CP	
8 980 073	RS232 interface cable, length 2,5 m. Interface cable RS232 9-pole/9-pole	CP	
8 980 074	RS232 interface cable, length 5 m. Interface cable RS232 9-pole/9-pole.	CP	
8 980 031	Ethernet/RS232 interface converter for temperature control instruments with RS232 interface.	СР	
8 980 032	Ethernet/RS232 Converter Connection of up to 4 JULABO instruments via RS232 interface cable (8980074). Connection to an existing network via RJ45 cable (8980071).	СР	
8 980 033	Ethernet/RS232 Converter Connection of up to 8 JULABO instruments via RS232 interface cable (8980074). Connection to an existing network via RJ45 cable (8980071).	СР	

Calibration and testing certificates

Order No.	Description	Suitable for
8 902 901	1-Point Manufacturer's calibration certificate	C, CD, CP
8 902 903	3-Point Manufacturer's calibration certificate	C, CD, CP
8 902 905	5-Point Manufacturer's calibration certificate	C, CD, CP
8 903 025	Manufacturer's testing certificate for JULABO units (with up to 1 kW cooling capacity at $+20$ °C)	Refrigerated Circulators

IQ/OQ Documentation for equipment qualification

Order No.	Description	Suitable for	A 1
2 310 110	IQ/OQ Documentation, Category 1	CD, CP	

Preventative Maintenance Contract				
Order No.	Description	Suitable for	Same State	-
2 350 100	Preventative Maintenance Contract Standard includes the following ser- vices: Visual inspection, technical diagnostics, data analysis, BlackBox, tes- ting of tube connections and bath fluid, thorough cleaning of condenser and other components, testing of temperature stability and sensor calibra- tion, testing / measuring of pump and cooling capacity (depending on mo- del) and firmware update (if no hardware adjustment is required)	CD, CP		
2 350 110	Preventative Maintenance Contract Premium includes all services listed above as well as spare parts and labor required for installation or replacement	CD, CP		

CORIO **Heating Circulators** feature professional technology for routine laboratory tasks. The portfolio permits a wide range of applications and includes immersion circulators, open heating bath circulators, and heating circulators.

Heating Circulators

CORIO C Immersion Circulator

for working temperatures from +20 °C to +100 °C

The CORIO C is the entry level model of the CORIO circulator portfolio. The bath attachment clamp is included in delivery and facilitates mounting of the circulator on any bath tank up to 30 liters.

- Precise temperature control
- For internal standard applications
- For bath tanks with a max. filling volume of 30 liters
- Immersion depth: 7.5 ... 16.5 cm
- Bright, white, easy-to-read display
- Whisper quiet
- Easy operation
- Class I (NFL) according to DIN 12876-1

To adapt the CORIO Immersion Circulator to your individual application we offer a comprehensive range of accessories (racks, bath lids, and more).

Option I

The universal bath attachment clamp permits mounting the CORIO Immersion Circulator on rectangular as well as round bath tanks.

Option II

Just a few simple steps and the bath attachment clamp is transformed into a mount for laboratory stands.

Option III

The Immersion Circulator can be attached directly to the rim of an open JULABO bath.

Flexibility.

The jet nozzle permits continuous adjustment of the pump stream in your bath.

CORIDM COrder No.9 011 000Working temperature
range °C $^{(1)}$ $+20 \dots +100$ Temperature stability °C ± 0.03 Heating capacity kW2Circulation capacity
Flow rate / PressureI/min bar
6 0.1Dimensions cm $W \times L \times H$
 $13.2 \times 16 \times 36.2$

Applications (CORIO C, CD and CP)

Flexible applications when changing bath tanks. For a large variety of applications in chemistry, pharmaceutics, medicine, e.g. temperature applications, analytics, or material testing.

CORIO CD and CP Immersion Circulator

for working temperatures from +20 °C to +200 °C

In addition to the advantages of the CORIO C Circulator, the CORIO CD and CP Immersion Circulator can be equipped with an optional pump set for temperature control of external applications.

- Precise temperature control
- For internal and external applications (accessories required)
- For bath tanks with a max. filling volume of 50 liters
- Immersion depth: 7.5 ... 16.5 cm
- Bright, white, easy-to-read display
- Very quiet
- Easy handling
- Easy change-over from internal to external circulation and vice versa
- pump capacity, infinitely adjustable (CP)
- USB interface
- R232 interface (CP)
- Early warning system for low liquid level (CP)
- Class III (FL) according to DIN 12876-1

To adapt the CORIO Immersion Circulator to your individual application we offer a comprehensive range of accessories (racks, bath lids, tubing, adapters, and more).

CORIO" (D

Order No.

range °C 1)

Working temperature

Temperature stability °C

Heating capacity kW

Flow rate / Pressure

Pump capacity

Dimensions cm

			NEW
	Order No.	9 013 00	0
•••••	Working temperature range °C $^{1)}$	+20 +2	200
	Temperature stability °C	± 0.02	
*	Heating capacity kW	2	
•	Pump capacity	l/min	bar
	Flow rate / Pressure	8 27	0.1 0.7
•••••	Dimensions cm	W × L × H 13.2 × 16	× 36.2

Pump capacity Bath fluid: Water

13.2 × 16 × 36.2

bar

0.35

9 012 000

± 0.03

2

l/min

 $W \times L \times H$

15

+20 ... +150

Optional pump set

With a few simple steps you can install a pump set on the CORIO CD Immersion Circulator. In no time at all, your circulator is ready for temperature control of an external application.

Universal.

Universal bath attachment clamp. For straight containers. For round containers. For laboratory stands (in combination with stand attachment).

¹⁾ For applications near or below ambient temperature: use a cooling coil or JULABO immersion cooler.

CORIO C Open Heating Bath Circulators

for internal temperature applications with transparent bath tanks for working temperatures from +20 $^\circ\rm C$ to +100 $^\circ\rm C$

The Open Heating Bath Circulators of the CORIO series feature durable, high-quality transparent bath tanks.

- For internal applications
- Bright, white, easy-to-read display
- Whisper quiet

To adapt the CORIO Open Heating Bath Circulator to your individual application we offer a comprehensive range of accessories (racks, bath lids, and more).

Clever.

A clean solution. The cleverly integrated drip off design (B and BT baths).

CORIO[™] C-BT5

Order No.	9 011 305	
Working temperature range °C $^{1)}$	+20 +100	
Temperature stability °C	± 0.03	
Heating capacity kW	2 kW 2	
Circulation capacity Flow rate / Pressure	l/min 6	bar 0.1
Bath opening / Bath depth cm	W × L / D 15 × 15 / 15	
Filling volume liters	3.5 5	
Dimensions cm	$ W \times L \times H 23 \times 38 \times 3 $	8

•	
	T
· · · · · · · · · · · · · · · · · · ·	

.

Company of the local sector	
Concerning of the second se	
· · · · · · · · · · · · · · · · · · ·	*
No. of Concession, Name	
	6 · · · ·
	i i
The subscription of the su	
(01)	
· · · · · · · · · · · · · · · · · · ·	
	+
•	
	. •
	•

	BIA		•
Order No.	9 011 309		*
Working temperature range $^{\circ}C^{1)}$	+20 +10	00	* * * *
Temperature stability °C	± 0.03		• • • •
Heating capacity kW	2		•
Circulation capacity Flow rate / Pressure	l/min 6	bar 0.1	* * * * * * * * * * * * * * * * * * *
Bath opening / Bath depth cm	W × L / D 23 × 15 / 1	5	• • • • •
Filling volume liters	6 9		•
Dimensions cm	W × L × H 32 × 38 × 3	38	0 0 0 0

	BT19	
Order No.	9 011 319	
Working temperature range °C ¹⁾	+20 +10	00
Temperature stability °C	± 0.03	
Heating capacity kW	2	
Circulation capacity	l/min	bar
FIOW rate / Pressure	6	0.1
Bath opening / Bath depth cm	W × L / D 30 × 35 / 15	5
Filling volume liters	14 19	
Dimensions cm	$ W \times L \times H 38 \times 58 \times 3 $	8

CORIO" (-	BT27	
Order No.	9 011 327	
Working temperature range °C ¹⁾	+20 +10	0
Temperature stability °C	± 0.03	
Heating capacity kW	2	
Circulation capacity Flow rate / Pressure	l/min 6	bar 0.1
Bath opening / Bath depth cm	W × L / D 30 × 35 / 20	
Filling volume liters	20 27	
Dimensions cm	$ W \times L \times H 38 \times 58 \times 43 $	3

Heat-up time

Bath fluid: Water

Applications

Temperature control of samples, preparation of samples for serology and clinical chemistry, analysis, material testing, and more.

CORIO C Open Heating Bath Circulators

for internal temperature applications with stainless steel bath tanks for working temperatures from +20 $^\circ C$ to +100 $^\circ C$

The Open Heating Bath Circulators of the CORIO series feature high-quality bath tanks made of stainless steel.

- For internal applications
- Bright, white, easy-to-read display
- Whisper quiet
- High-quality bath tanks made of stainless steel
- Integrated drain screw (except for B5)

To adapt the CORIO Open Heating Bath Circulator to your individual application we offer a comprehensive range of accessories (racks, bath lids, and more).

Applications

Temperature control of samples, preparation of samples for serology and clinical chemistry, analysis, material testing, and more.

Order No.	9 011 405	
Working temperature range °C $^{1)}$	+20 +100	
Temperature stability °C	± 0.03	
Heating capacity kW	2	
Circulation capacity Flow rate / Pressure	l/min 6	bar 0.1
Bath opening / Bath depth cm	W × L / D 15 × 15 / 1	5
Filling volume liters	3.5 5	
Dimensions cm	W × L × H 23 × 38 × 4	11

•			
:		Ξ.	
	202		· · · ·
•			· · · · ·
2		2	· · · · ·
0		•	
2.		÷.	
1			
ē		ē	
•			

* * * *

....

Order No.	9 011 413		
Working temperature range °C ¹⁾	+20 +10	00	
Temperature stability °C	± 0.03		
Heating capacity kW	2		
Circulation capacity Flow rate / Pressure	l/min 6	bar 0.1	
Bath opening / Bath depth cm	W × L / D 30 × 18 / 1	5	
Filling volume liters	9 13		
Dimensions cm	$W \times L \times H$ 38 × 40 × 4	12	

CORIO" (B17	
Order No.	9 011 417	
Working temperature range °C ¹⁾	+20 +1	00
Temperature stability °C	± 0.03	
Heating capacity kW	2	
Circulation capacity Flow rate / Pressure	l/min 6	bar 0.1
Bath opening / Bath depth cm	W × L / D 30 × 18 / 2	0
Filling volume liters	13 17	
Dimensions cm	$W \times L \times H$ 38 × 40 × 4	47

*******		• • •	
	-B19		
Order No.	9 011 4 [.]	19	
Working temperature range °C $^{1)}$	+20 +	-100	0 0 0 0 0
Temperature stability °C	± 0.03		
Heating capacity kW	2		
Circulation capacity Flow rate / Pressure	l/min 6	bar 0.1	
Bath opening / Bath depth cm	W × L / D 30 × 35 /) / 15	
Filling volume liters	14 19		
Dimensions cm	W × L × 38 × 58	H × 42	

CORIO[®] C-B27

Order No.	9 011 427	
Working temperature range °C $^{1)}$	+20 +100	
Temperature stability °C	± 0.03	
Heating capacity kW	2	
Circulation capacity Flow rate / Pressure	l/min 6	bar 0.1
Bath opening / Bath depth cm	W × L / D 30 × 35 / 20	
Filling volume liters	17 27	
Dimensions cm	W × L × H 38 × 58 × /	17

Heat-up time Bath fluid: Water

.....

CORIO CD Open Heating Bath Circulators

for internal and external temperature applications with transparent bath tanks for working temperatures from +20 °C to +100 °C

The Open Heating Bath Circulator of the CORIO series feature durable, high-quality transparent bath tanks and pump connections.

- For internal and external applications
- Bright, white, easy-to-read display
- Very quiet
- Easy change-over from internal to external circulation and vice versa

To adapt the CORIO Open Heating Bath Circulator to your individual application we offer a comprehensive range of accessories (racks, bath lids, tubing, adapters and more).

Heat-up time Bath fluid: Water

Pump capacity Bath fluid: Water

Applications

Temperature control of samples, preparation of samples for serology and clinical chemistry, analysis, material testing, external temperature control applications in combination with measuring instruments, measuring cells, photometers, refractometers, polarimeters, and more.

	D-BT5	
Order No.	9 012 305	
Working temperature range °C $^{1)}$	+20 +10	00
Temperature stability °C	± 0.03	
Heating capacity kW	2	
Pump capacity Flow rate / Pressure	l/min 15	bar 0.35
Bath opening / Bath depth cm	W × L / D 15 × 15 / 15	5
Filling volume liters	3.5 5	
Dimensions cm	$W\times L\times H$	

 $23\times 38\times 38$

Dimensions cm

	D-BT27	
Order No.	9 012 327	
Working temperature range °C $^{\mbox{\tiny 1)}}$	+20 +10	0
Temperature stability °C	± 0.03	
Heating capacity kW	2	
Pump capacity Flow rate / Pressure	l/min 15	bar 0.35
Bath opening / Bath depth cm	W × L / D 30 × 35 / 20)
Filling volume liters	20 27	
Dimensions cm	$ W \times L \times H 38 \times 58 \times 4 $	3

CORIO CD Open Heating Bath Circulators

for internal and external temperature applications with stainless steel bath tanks for working temperatures from +20 °C to +150 °C

The Open Heating Bath Circulators of the CORIO series feature high-quality bath tanks made of stainless steel and with pump connections.

- For internal and external applications
- Bright, white, easy-to-read display
- Very quiet
- Easy change-over from internal to external circulation and vice versa
- USB connection
- High-quality bath tanks made of stainless steel
- Integrated drain screw (except for B5)

To adapt the CORIO Open Heating Bath Circulator to your individual application we offer a comprehensive range of accessories (racks, bath lids, tubing, adapters, and more).

Applications

Temperature control of samples, preparation of samples for serology and clinical chemistry, analysis, material testing, external temperature control applications in combination with measuring instruments, measuring cells, photometers, refractometers, polarimeters, and more.

CORIO" CD-B5

Order No.	9 012 405	
Working temperature range °C $^{\mbox{\tiny 1)}}$	+20 +15	50
Temperature stability °C	± 0.03	
Heating capacity kW	2	
Pump capacity	l/min	bar
Flow rate / Pressure	15	0.35
Bath opening / Bath depth cm	W × L / D 15 × 15 / 1	5
Filling volume liters	3.5 5	
Dimensions cm	W × L × H 23 × 38 × 4	1

Heat-up time Bath fluid: Water

Pump capacity Bath fluid: Water

¹⁾ with counter cooling / bath cover (accessory).

CORIO" (D-B13)

Order No.	9 012 413		•	
Working temperature range °C $^{1)}$	+20 +15	0	• • • • • •	
Temperature stability °C	± 0.03		•	
Heating capacity kW	2		•	
Pump capacity Flow rate / Pressure	l/min 15	bar 0.35	• • • • • •	
Bath opening / Bath depth cm	W × L / D 30 × 18 / 15	5	•	
Filling volume liters	9 13		•	
Dimensions cm	$ W \times L \times H 38 \times 40 \times 4 $	2	• • • • • •	
			-	•

	D-B27		
Order No.	9 012 427		•
Working temperature range °C ¹⁾	+20 +15	60	•
Temperature stability °C	± 0.03		•
Heating capacity kW	2		•
Pump capacity Flow rate / Pressure	l/min 15	bar 0.35	• • • • • • •
Bath opening / Bath depth cm	W × L / D 30 × 35 / 20)	
Filling volume liters	17 27		•
Dimensions cm	W × L × H 38 × 58 × 4	.7	• • • • •

LORIO (I	D-B17		
Order No.	9 012 417		•
Working temperature range °C $^{1)}$	+20 +15	0	• • • • • • •
Temperature stability °C	± 0.03		• • • •
Heating capacity kW	2		• • • •
Pump capacity Flow rate / Pressure	l/min 15	bar 0.35	• • • • • • •
Bath opening / Bath depth cm	W × L / D 30 × 18 / 20		
Filling volume liters	13 17		• • • •
Dimensions cm	$ W \times L \times H 38 \times 40 \times 4 $	7	• • • • • •

	ככס-נ	and States in
Order No.	9 012 433	0 0 0
Working temperature range °C $^{\mbox{\tiny 1)}}$	+20 +150	0
Temperature stability °C	± 0.03	0 0 0
Heating capacity kW	2	•
Pump capacity Flow rate / Pressure	l/min 15	bar 0.35
Bath opening / Bath depth cm	W × L / D 66 × 32 / 15	0 0 0 0 0 0
Filling volume liters	26 39	0 0 0
Dimensions cm	W × L × H 91 × 36 × 43	3

CORIO[™] CD-B19

Order No.	9 012 419	
Working temperature range °C $^{1)}$	+20 +15	0
Temperature stability °C	± 0.03	
Heating capacity kW	2	
Pump capacity Flow rate / Pressure	l/min 15	bar 0.35
Bath opening / Bath depth cm	W × L / D 30 × 35 / 15	
Filling volume liters	14 19	
Dimensions cm	W × L × H 38 × 58 × 4	2

	CORIO" (D-B39	1. 30
•	Order No.	9 012 439	
• • • •	Working temperature range $^{\circ}C^{1)}$	+20 +15	50
•	Temperature stability °C	± 0.03	
• • • •	Heating capacity kW	2	
• • • • • • •	Pump capacity Flow rate / Pressure	l/min 15	bar 0.35
	Bath opening / Bath depth cm	W × L / D 33 × 30 / 30	0
• • • •	Filling volume liters	35 41	
	Dimensions cm	W × L × H 54 × 34 × 5	57

CORIO CD and CP Heating Circulators

for internal and external temperature applications with stainless steel baths for working temperatures from +20 °C to +200 °C

CORIO Heating Circulators feature professional technology for demanding applications. These units facilitate internal temperature control in the bath tank or control of externally connected applications.

- For internal and external applications
- Bright, white, easy-to-read display
- Very quiet
- Easy change-over from internal to external circulation and vice versa
- Strong pump capacity, infinitely adjustable (CP)
- USB connection
- R232 interface (CP)
- High-quality bath tanks made of stainless steel with bath lid and drain tap
- Integrated pump connection M16×1
- Early warning system for low liquid level (CP)
- Integrated cooling coil for counter-cooling

To adapt the CORIO Heating Circulator to your individual application we offer a comprehensive range of accessories (racks, bath lids, tubing, adapters, and more).

Applications

External temperature applications in combination with jacketed reactors, distillation apparatus, mini-plant applications, photometers, refractometers, internal temperature applications of samples and small objects.

Heat-up time Bath fluid: Thermal

9 012 504	
+20 +15	0
± 0.03	
2	
l/min	bar
15	0.35
$W \times L / D$	
13 × 15 / 15	
3 4.5	
$ W \times L \times H $	2
	9 012 504 +20 +150 ± 0.03 2 l/min 15 W × L / D 13 × 15 / 15 3 4.5 W × L × H 23 × 41 × 42

	Р-ВС4	NEW
Order No.	9 013 504	
Working temperature range °C $^{\mbox{\tiny 1)}}$	+20 +2	00
Temperature stability °C	± 0.02	
Heating capacity kW	2	
Pump capacity Flow rate / Pressure	l/min 8 27	bar 0.1 0.7
Bath opening / Bath depth cm	W × L / D 13 × 15 / 1	5
Filling volume liters	3 4.5	
Dimensions cm	W × L × H 23 × 41 × 4	42

CORIO[®] CD-BC6

Order No.	9 012 506	
Working temperature range °C $^{1)}$	+20 +15	50
Temperature stability °C	± 0.03	
Heating capacity kW	2	
Pump capacity Flow rate / Pressure	l/min 15	bar 0.35
Bath opening / Bath depth cm	W × L / D 13 × 15 / 20	0
Filling volume liters	4.5 6	
Dimensions cm	$W \times L \times H$ 24 × 44 × 4	17

	P-BC6	NEW		
Order No.	9 013 506		•	,
Working temperature range °C $^{1)}$	+20 +20	00	* * * * * * * * * * * * * * * * * * *	,
Temperature stability °C	± 0.02		•	
Heating capacity kW	2		•	
Pump capacity Flow rate / Pressure	l/min 8 27	bar 0.1 0.7	0 0 0 0 0	
Bath opening / Bath depth cm	W × L / D 13 × 15 / 20	0		
Filling volume liters	4.5 6			
Dimensions cm	$W \times L \times H$ 24 × 44 × 4	17	0 0 0 0 0 0 0	

	D-BC12	and see
Order No.	9 012 512	
Norking temperature ange °C 1)	+20 +15	0
Temperature stability °C	± 0.03	
Heating capacity kW	2	
Pump capacity Flow rate / Pressure	l/min 15	bar 0.35
Bath opening / Bath depth cm	W × L / D 22 × 15 / 20	
illing volume liters	8.5 12	
Dimensions cm	$\begin{array}{l} W\timesL\timesH\\ 33\times49\times4 \end{array}$	7

.....

	P-BC12	NEW	• • •
Order No.	9 013 512		•
Norking temperature range °C $^{1)}$	+20 +20	0	•
Temperature stability °C	± 0.02		•
Heating capacity kW	2		•
Pump capacity Flow rate / Pressure	l/min 8 27	bar 0.1 0.7	• • • • • • • • • • • • • • • • • • • •
Bath opening / Bath depth cm	W × L / D 22 × 15 / 20)	• • • • •
Filling volume liters	8.5 12		
Dimensions cm	$ W \times L \times H 33 \times 49 \times 4 $	7	

CD-BC26 ORIO Order No. 9 012 526 Working temperature range °C $^{\mbox{\tiny 1)}}$ +20 ... +150 Temperature stability °C ± 0.03

Heating capacity kW	2	
Pump capacity Flow rate / Pressure	l/min 15	bar 0.35
Bath opening / Bath depth cm	W × L / D 26 × 35 / 20	
Filling volume liters	19 26	
Dimensions cm	$W \times L \times H$	R

	P-BC26	NEW
Order No.	9 013 526	
Working temperature range °C $^{1)}$	+20 +20	00
Temperature stability °C	± 0.02	
Heating capacity kW	2	
Pump capacity Flow rate / Pressure	l/min 8 27	bar 0.1 0.7
Bath opening / Bath depth cm	W × L / D 26 × 35 / 20)
Filling volume liters	19 26	
Dimensions cm	W × L × H 39 × 62 × 4	18

JULABO Thermal Bath Fluids

JULABO Thermal bath fluids have been carefully chosen following long term testing. They are highly suitable for all of your temperature control applications guaranteeing safe and reliable operation.

Choosing the proper bath fluid is critical for high performance temperature control. The viscosity and heat transfer characteristics of the Thermal fluids are specifically selected for use with JULABO CORIO temperature control instruments.

Advantages

- Wide temperature ranges
- Low viscosity
- High stability
- Good heat conductivity
- Minimum odor
- Long fluid life

Thermal G	8 940 125
Order No. 10 liters	8 940 124
Working temperature range °C	-30 +80
Flash point °C	not applicable
Fire point °C	not applicable
Viscosity, (kinematic at +20 °C) mm²/s	4.07
Density (at +20 °C) g/cm ³	1.08
Pour point °C	-70
Boiling point °C	+108
Ignition temperature °C	+430
Color	light yellow

.

Makes routine laboratory work easier.

JULABO Thermal bath fluids are delivered in containers with a handy drain tap.

•		···.	
•			
		-	•
"•.	••••••••	• • • • • • • • • • • •	, • • • • •

Thermal HS	
Order No. 5 liters	8 940 103
Order No. 10 liters	8 940 102
Working temperature range °C	+20 +250
Flash point °C	+270
Fire point °C	+360
Viscosity, (kinematic at +20 °C) mm ² /s	55
Density (at +20 $^{\circ}$ C) g/cm ³	0.96
Pour point °C	<-60
Boiling point °C	+246
Ignition temperature °C	>+400
Color	light brown

Thermal H10	
Order No. 5 liters	8 940 115
Order No. 10 liters	8 940 114
Working temperature range °C	-20 +180
Flash point °C	>+170
Fire point °C	+220
Viscosity, (kinematic at +20 °C) mm ² /s	10.8
Density (at +20 °C) g/cm ³	0.94
Pour point °C	<-60
Boiling point °C	+288
Ignition temperature °C	+370
Color	clear

Thermal H20S			
Order No. 5 liters	8 940 109		
Order No. 10 liters	8 940 108		
Working temperature range °C	0 +220		
Flash point °C	+230		
Fire point °C	+264		
Viscosity, (kinematic at +20 °C) mm ² /s	22.3		
Density (at +20 $^{\circ}$ C) g/cm ³	0.95		
Pour point °C	-70		
Boiling point °C	+424		
Ignition temperature °C	+385		
Color	light brown		

JULABO Thermal bath fluids based on silicone ...

... are chemically inert substances which do not affect metals like iron, copper, zinc, aluminum, chrome or nickel. Compared to other fluids, JULABO Thermal fluids have an extraordinarily low electrical conductivity. When properly stored, the fluids will last for 12 months and longer as they are not susceptible to climatic influences.

JULABO Thermal bath fluids based on water-glycol ...

... (monoethyleneglycol with anti-corrosion additives) have excellent thermal characteristics and a low viscosity. In addition, they provide anti-freeze protection, i.e. they can be applied at temperatures below the freezing point of water.

More information on JULABO Thermal bath fluids \ldots

... in our brochure ,Thermal Bath Fluids' at www.julabo.com.

Heating Circulators Accessories

Order No.	Description	Suitable for
8 940 006	Aqua Stabil, 6 bottles 100 ml each	C, CD, CP
8 940 012	Aqua Stabil, 12 bottles 100 ml each	C, CD, CP
9 940 200	Descaling agent 1 Liter	C, CD, CP

Transparent bath tanks up to +100 °C

Order No.	Description	Inner dimensions cm	Outer dimensions cm	Suitable for	1. S. 1. 1.
9 901 305	Bath tank BT5	15 × 30/15	22 × 37 × 16	C, CD	
9 901 309	Bath tank BT9	24 × 30/15	31 × 37 × 16	C, CD	
9 901 319	Bath tank BT19	30 × 50/15	$37 \times 58 \times 16$	C, CD	
9 901 327	Bath tank BT27	30 × 50/20	37 × 58 × 21	C, CD	

Stainless steel bath tanks up to +150 °C, insulated

Order No.	Description	Inner dimensions cm	Outer dimensions cm	Suitable for	· * * *
9 903 405	Bath tank B5	15 × 30/15	22 × 37 × 20	C, CD	
9 903 413	Bath tank B13	30 × 32/15	$37 \times 40 \times 20$	C, CD	
9 903 417	Bath tank B17	30 × 32/20	$37 \times 40 \times 25$	C, CD	
9 903 419	Bath tank B19	30 × 50/15	37 × 58 × 20	C, CD	
9 903 427	Bath tank B27	30 × 50/20	37 × 58 × 25	C, CD	
9 903 433	Bath tank B33	83 × 30/15	$90 \times 36 \times 20$	C, CD	
9 903 439	Bath tank B39	30 × 50/30	$34 \times 58 \times 35$	C, CD	

Bath covers

Order No.	Description	Suitable for
9 970 296	Flat bath cover	B5, BT5
9 970 290	Flat bath cover	B13, B17
9 970 291	Flat bath cover	B19, B27, BT19, BT27
9 970 292	Flat bath cover	B33
9 970 293	Flat bath cover	B39
9 970 253	Lift-up gable bath cover made of stainless steel	B13, B17
9 970 254	Lift-up gable bath cover made of stainless steel	B19, B27, BT19, BT27
9 970 257	Lift-up gable bath cover made of stainless steel	B33

38

Assembly frames

Order No.	Description	Suitable for
9 970 229	Stainless steel bridge including assembly frame	C-BT5, C-B5
9 970 228	Stainless steel bridge including assembly frame	C-BT19/27, C-B13/17/19/27
9 970 201	Extendable bridge, extendable from 330 mm to 680 mm	C, CD, CP

Hollow balls to reduce heat loss, evaporation, oxygen input, odors, action of light

Order No.	Description	Suitable for	-
8 970 010	Hollow balls, Polypropylene [®] , 20 mm Ø, 1000 pcs (up to +100 °C, for water only)	C, CD, CP	

Test tube racks made out of stainless steel, up to +150 °C

Order No.	Description	Suitable for
9 970 320	Test tube rack for 30 tubes 100×17 mm dia.	B5, BT5, BC4, BC6
9 970 321	Test tube rack for 42 tubes $75 \times 12/13$ mm dia.	B5, BT5, BC4, BC6
9 970 322	Test tube rack for 42 tubes 40 \times 10/11 mm dia.	B5, BT5, BC4, BC6
9 970 323	Test tube rack for 10 Falcon tubes 50 ml	B5, BT5, BC4, BC6
9 970 323		65, 615, 604, 600

Test tube racks made out of high grade plastic, up to +100 °C

Order No.	Description	Suitable for
9 970 300	Test tube rack for 60 tubes $100 \times 16/17$ mm dia.	B13, B17, B19, B27, B33, BT19, BT27
9 970 301	Test tube rack for 90 tubes $75 \times 12/13$ mm dia.	B13, B17, B19, B27, B33, BT19, BT27
9 970 303	Test tube rack for 21 tubes 30 mm dia.	B13, B17, B19, B27, B33, BT19, BT27

	can be inse	rted?	.st tub		, arc av	unubr	c for ye		in unu	110 11	lariy	
1	Order No.	BT5	BT9	BT19	BT27	B5	B13	B17	B19	B27	B33	B39
N. V	9 970 320	1	-	-	-	1	-	-	-	-	-	-
	9 970 321	1	-	-	-	1	-	-	-	-	-	-
1.2	9 970 322	1	-	-	-	1	-	-	-	-	-	-
	9 970 323	1	-	-	-	1	-	-	-	-	-	-
-	9 970 300	-	-	3	3	-	1	1	3	3	6	-
	9 970 301	-	-	3	3	-	1	1	3	3	6	-
3	9 970 303	-	-	3	3	-	1	1	3	3	6	-

Heating Circulators Accessories

Immersion-height adjustable platforms

Order No.	Description	Suitable for
9 970 506	Immersion-height adjustable platform	CD-BC26, CP-BC26
9 970 503	Immersion-height adjustable platform	B13, B17
9 970 502	Immersion-height adjustable platform	B19, B27, BT19, BT27

Universal bath attachment clamp

Order No.	Description	Suitable for
9 970 420	Bath attachment clamp for wall thickness up to 30 mm	C, CD, CP

Pump set for external temperature applications

Order No.	Description	Sui	itable for	
9 970 140	Pump set (Pump connectors M16×1)	CD		
9 970 141	Pump set (Pump connectors M16×1)	CP		

Stand attachment for laboratory stands

Order No.	Description	Suitable for
9 970 022	Stand attachment with rod 200x12 mm dia.	C, CD, CP

Orde 9 970

Heat exchangers/Cooling installations

Order No.	Description	Suitable for
9 970 240	Bath cover with built-in heat exchanger	BC4, BC6
9 970 242	Bath cover with built-in heat exchanger	BC12
9 970 100	Assembly cooling coil for counter-cooling with tap water for installation into the existing assembly frame	CD-BT5/19/27,CD-B5/13/17/19/27/33/39
9 970 101	Installation cooling coil for counter-cooling with tap water for mounting on circulator head and for use with the universal bath attachment clamp (without assembly frame)	C, C-BT5/9/19/27,C-B5/13/17/19/27, CD, CP

CR® tubing (-30 °C ... +120 °C)

Order No.	Description	Suitable for
8 930 008	1 m, 8 mm inner dia.	CD, CP
8 930 010	1 m, 10 mm inner dia.	CD, CP
8 930 012	1 m, 12 mm inner dia.	CD, CP

Viton[®] tubing (-35 °C ... +200 °C)

Order No.	Description	Suitable for
8 930 108	1 m, 8 mm inner dia.	CD, CP
8 930 110	1 m, 10 mm inner dia.	CD, CP
8 930 112	1 m, 12 mm inner dia.	CD, CP

Bestell-Nr.	Bezeichnung	Einsetzbar für	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 930 140	PTFE tubing 8 mm ID \times 10 mm OD per meter	CD, CP	
8 930 142	PTFE tubing 12 mm ID \times 14 mm OD per meter	CD, CP	

Order No.	Description	Suitable for
8 930 410	1 m, for tubing 8 - 10 mm inner dia.	CR [®] /Viton [®] Tubing
8 930 412	1 m, for tubing 12 mm inner dia.	CR [®] /Viton [®] Tubing

Tube clamps

Order No.	Description	Suitable for
8 970 480	2 Tube clamps, size 1	CR®/Viton® Tubing 8 mm inner dia.
8 970 481	2 Tube clamps, size 2	CR®/Viton® Tubing 10 - 12 mm inner dia.

Metal tubing flexible, insulated (-50 °C ... +200 °C)

Order No.	Description	Suitable for	1. A. C. A. S.
8 930 220	0.5 m Metal tubing, 2 fi ttings M16 \times 1 female	CD, CP	
8 930 221	1.0 m Metal tubing, 2 fittings M16×1 female	CD, CP	
8 930 222	1.5 m Metall tubing, with connector M16×1	CD, CP	
8 930 223	3.0 m Metal tubing with connector M16×1	CD, CP	

Heating Circulators Accessories

Adapters and connectors

Order No.	Description	Suitable for
8 970 446	2 Barbed fittings for tubing 8 mm inner dia.	CD, CP
8 970 447	2 Barbed fittings for tubing 10 mm inner dia.	CD, CP
8 970 445	2 Barbed fittings for tubing 12 mm inner dia	CD, CP
8 970 443	1 Adapter M16×1 male to M16×1 male	CD, CP
8 970 490	2 Collar nuts M16×1 female	CD, CP
8 970 442	2 Elbow fittings 90°, M16×1 female/male	CD, CP
8 890 004	2 Adapters M16×1 female to NPT 1/4" male	CD, CP
8 890 005	2 Adapters M16×1 female to NPT 1/4" female	CD, CP
8 890 006	2 Adapters M16×1 female to NPT 3/8" male	CD, CP
8 890 007	2 Adapters M16×1 female to NPT 3/8" female	CD, CP
8 890 008	2 Adapters M16×1 female to NPT 1/2" male	CD, CP
8 890 009	2 Adapters M16×1 female to NPT 1/2" female	CD, CP
8 890 010	2 Adapters M16×1 male to NPT 1/4" female	CD, CP
8 891 008	1 Adapter M16×1 male to BSP 1/2" female	CD, CP
8 891 009	1 Adapter M16×1 male to BSP 3/4" female	CD, CP
8 890 011	2 Adapters M16×1 female to tube 1/4" male	CD, CP
8 890 012	2 Adapters M16×1 female to tube 3/8" male	CD, CP
8 890 013	2 Adapters M16×1 female to tube 1/2" male	CD, CP
8 890 024	2 Adapters M16×1 female to M16×1 female	CD, CP

Z

Shut-off valves for loop circuit

Order No.	Description	Suitable for	A. 7 . 4
8 970 457	Shut-off valve (-30 °C +200 °C), M16×1	CD, CP	
8 970 456	Shut-off valve (-10 °C +100 °C), M16×1	CD, CP	

Twin distributing adapters with barbed fittings

Order No.	Description	Suitable for
8 970 470	Twin distributing adapter with barbed fittings	Tubing 8 mm inner dia.
8 970 471	Twin distributing adapter with barbed fittings	Tubing 12 mm inner dia.
8 970 472	Twin distributing adapter with barbed fittings	Tubing 10 mm inner dia.
8 970 473	Twin distributing adapter M16×1 female to $2 \times M16 \times 1$ male	CD, CP

2

Software and hardware for instrument control, data recording and visualization, interfaces

Order No.	Description	Suitable for
8 901 102	EasyTEMP Software (free of charge at www.julabo.com)	CD, CP
8 901 105	EasyTEMP Professional Software, incl. USB-Dongle	CD, CP
9 900 110	USB interface cable 2 m, type A-B	CD, CP
9 900 112	USB 2.0 Repeater extension cable, length = 5 m	CD, CP
9 900 114	USB 2.0 Repeater extension cable, length = 10 m	CD, CP
8 980 073	RS232 interface cable, length 2,5 m. Interface cable RS232 9-pole/9-pole	СР
8 980 074	RS232 interface cable, length 5 m. Interface cable RS232 9-pole/9-pole.	СР

Calibration and testing certificates

Order No.	Description	S	Suitable for	A
8 902 901	1-Point Manufacturer's calibration certificate	(C, CD, CP	
8 902 903	3-Point Manufacturer's calibration certificate	(C, CD, CP	
8 902 905	5-Point Manufacturer's calibration certificate	(C, CD, CP	
8 903 015	Manufacturer's testing certificate for JULABO unit	s w/o cooling units C	C, CD, CP	

IQ/OQ Documentation for equipment qualification

Order No.	Description	Suitable for	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 310 110	IQ/OQ Documentation, Category 1	C, CD, CP	

Preventative Maintenance Contract

Order No.	Description	Suitable for	1
2 350 100	Preventative Maintenance Contract Standard includes the following ser- vices: Visual inspection, technical diagnostics, data analysis, BlackBox, tes- ting of tube connections and bath fl uid, thorough cleaning of condenser and other components, testing of temperature stability and sensor calibra- tion, testing/measuring of pump and cooling capacity (depending on mo- del) and firmware update (if no hardware adjustment is required)	C, CD, CP	
2 350 110	Preventative Maintenance Contract Premium includes all services listeda- bove as well as spare parts and labor required for installation or repla- cement	C, CD, CP	

The Julabo advantages at a glance.

JULABO temperature control solutions – high-precision and speed

JULABO products include high-quality temperature control solutions to cover the temperature range -95 °C to +400 °C.

Refrigerated Circulators

The JULABO Refrigerated Circulators are suitable for internal and external applications and can be used within the temperature range -95 °C to +200 °C.

Water Baths and Shaking Water Baths

JULABO Water Baths and Shaking Water Baths can be used for a variety of applications within the temperature range +18 °C to +99.9 °C.

Heating Circulators

Heating Circulators are available in various designs including Heating Immersion Circulators, Open Heating Bath Circulators, or Heating Circulators and cover the temperature range +20 °C to +300 °C.

Additional Products

In addition, the JULABO product portfolio offers instruments for special requirements such as Calibration Baths, Visco Baths, Beer Forcing Test Baths, Immersion / Flow-Through Coolers, Temperature Controllers and Refrigerators for Chemicals.

Highly Dynamic Temperature Control Systems

The Highly Dynamic Temperature Control Systems from JULABO can be used for demanding temperature applications ranging from -92 °C to +400 °C. The PRESTO series offers unique high-performance specifications to meet these requirements.

Wireless Communication & Software Solutions

JULABO facilitates the automation of applications. The temperature control instruments can be comfortably controlled and monitored via PC.

Recirculating Coolers

JULABO Recirculating Coolers are highly efficient and therefore offer an environmentally friendly and economic alternative to tap water cooling in the temperature range -25 °C to +130 °C.

Accessories

The extensive range of instrument accessories ensures JULABO products are adaptable for research and industry use.

Comprehensive service and on-site support

JULABO takes pride in offering customers expert advice for pairing the proper JULABO temperature control solution to their specific application. JULABO service and support options include installation and calibration, equipment qualification documentation and application training. These invaluable services ensure customer confidence in the operation and maintenance of any JULABO unit.

Individual requirements – individual products

JULABO's wide product range offers a solution for almost any application. However, if a specific application needs more than a standard product can offer, the JULABO specialists will work out an individual solution with you.

JULABO. Quality.

Highest quality standards to ensure a long product life.

Green technology. Deliberately engineered with environmentally friendly materials and technologies.

Satisfied customers.

11 subsidiaries and more than 100 partners worldwide guarantee fast and qualified JULABO support.

100% checked.

100 % testing. 100 % quality. Every JULABO product is shipped to customers after a successful final inspection.

Quick start. Individual JULABO consultation and comprehensive manuals at your disposal.

Services 24/7. Around the clock availability. You can find suitable accessories, data sheets, manuals, case studies and more at www.julabo.osm.

Technical Specifications

Model	Order No.	Working tempera- ture range	Display	Display resolution	Temperature control	Temperature stability	Heating capacity	Cooling unit	
		°C				°C	kW		+20
CD-200F	9 012 701	-20 +150	LED	0.01 - 0.1	PID1	± 0.03	2	Air	0.22
CP-200F	9 013 701	-20 +200	LED	0.01 - 0.1	PID1	± 0.03	2	Air	0.2
CD-201F	9 012 702	-20 +150	LED	0.01 - 0.1	PID1	± 0.03	2	Air	0.22
CP-201F	9 013 702	-20 +200	LED	0.01 - 0.1	PID1	± 0.03	2	Air	0.2
CD-300F	9 012 703	-25 +150	LED	0.01 - 0.1	PID1	± 0.03	2	Air	0.31
CP-300F	9 013 703	-25 +200	LED	0.01 - 0.1	PID1	± 0.03	2	Air	0.3
CD-600F	9 012 704	-35 +150	LED	0.01 - 0.1	PID1	± 0.03	2	Air	0.6
CP-600F	9 013 704	-35 +200	LED	0.01 - 0.1	PID1	± 0.03	2	Air	0.6
CD-601F	9 012 705	-40 +150	LED	0.01 - 0.1	PID1	± 0.03	2	Air	0.6
CP-601F	9 013 705	-35 +200	LED	0.01 - 0.1	PID1	± 0.03	2	Air	0.6
CD-900F	9 012 706	-38 +150	LED	0.01 - 0.1	PID1	± 0.03	2	Air	0.9
CP-900F	9 013 706	-38 +200	LED	0.01 - 0.1	PID1	± 0.03	2	Air	0.9
CD-1000F	9 012 707	-40 +150	LED	0.01 - 0.1	PID1	± 0.03	2	Air	1
CP-1000F	9 013 707	-50 +200	LED	0.01 - 0.1	PID1	± 0.03	2	Air	1
CD-1001F	9 012 708	-38 +100	LED	0.01 - 0.1	PID1	± 0.03	2	Air	1
CP-1001F	9 013 708	-38 +100	LED	0.01 - 0.1	PID1	± 0.03	2	Air	1
с	9 011 000	+20 +100	LED	0.01 - 0.1	PID1	± 0.03	2	-	-
CD	9 012 000	+20 +150	LED	0.01 - 0.1	PID1	± 0.03	2	-	-
СР	9 013 000	+20 +200	LED	0.01 - 0.1	PID1	± 0.02	2	-	-
C-BT5	9 011 305	+20 +100	LED	0.01 - 0.1	PID1	± 0.03	2	-	-
C-BT9	9 011 309	+20 +100	LED	0.01 - 0.1	PID1	± 0.03	2	-	-
C-BT19	9 011 319	+20 +100	LED	0.01 - 0.1	PID1	± 0.03	2	-	-
C-BT27	9 011 327	+20 +100	LED	0.01 - 0.1	PID1	± 0.03	2		-
C-B5	9 011 405	+20 +100	LED	0.01 - 0.1	PID1	± 0.03	2	-	-
C-B13	9 011 413	+20 +100	LED	0.01 - 0.1	PID1	± 0.03	2	-	-
C-B17	9 011 417	+20 +100	LED	0.01 - 0.1	PID1	± 0.03	2	-	-
C-B19	9 011 419	+20 +100	LED	0.01 - 0.1	PID1	± 0.03	2	-	-
C-B27	9 011 427	+20 +100	LED	0.01 - 0.1	PID1	± 0.03	2	-	-
CD-BT5	9 012 305	+20 +100	LED	0.01 - 0.1	PID1	± 0.03	2	-	-
CD-BT19	9 012 319	+20 +100	LED	0.01 - 0.1	PID1	± 0.03	2	-	-
CD-BT27	9 012 327	+20 +100	LED	0.01 - 0.1	PID1	± 0.03	2	-	-
CD-B5	9 012 405	+20 +150	LED	0.01 - 0.1	PID1	± 0.03	2	-	-
CD-B13	9 012 413	+20 +150	LED	0.01 - 0.1	PID1	± 0.03	2	-	-
CD-B17	9 012 417	+20 +150	LED	0.01 - 0.1	PID1	± 0.03	2	-	-
CD-B19	9 012 419	+20 +150	LED	0.01 - 0.1	PID1	± 0.03	2		-
CD-B27	9 012 427	+20 +150	LED	0.01 - 0.1	PID1	± 0.03	2	-	-
CD-B33	9 012 433	+20 +150	LED	0.01 - 0.1	PID1	± 0.03	2		-
CD-B39	9 012 439	+20 +150	LED	0.01 - 0.1	PID1	± 0.03	2	-	-
CD-BC4	9 012 504	+20 +150	LED	0.01 - 0.1	PID1	± 0.03	2	-	-
CP-BC4	9 013 504	+20 +200	LED	0.01 - 0.1	PID1	± 0.02	2		
CD-BC6	9 012 506	+20 +150	LED	0.01 - 0.1	PID1	± 0.03	2	-	-
CP-BC6	9 013 506	+20 +200	LED	0.01 - 0.1	PID1	± 0.02	2		
CD-BC12	9 012 512	+20 +150	LED	0.01 - 0.1	PID1	± 0.03	2	-	-
CP-BC12	9 013 512	+20 +200	LED	0.01 - 0.1	PID1	± 0.02	2		
CD-BC26	9 012 526	+20 +150	LED	0.01 - 0.1	PID1	± 0.03	2	-	-
CP-BC26	9 013 526	+20 +200	LED	0.01 - 0.1	PID1	± 0.02	2	-	-

Unless otherwise indicated, all data relates to the operation at nominal voltage and frequency and +20 °C ambient temperature. Cooling capacity measured according to DIN 12876-2. Information regarding used refrigerants can be found at www.julabo.com.

Cooling capacity (kW) at bath temperature in °C (Medium: Ethanol)			Туре	Pump Pressure	Pump Pressure Flow rate	Pump connections	Filling volume	Classification acc. DIN 12876-1		
0	-10	-20	-30	-40	 ⊘ Pressure pump ⊕ Circulation pump 	bar	liters/min	male	liters	
0.17	0.13	0.06	-	-	<u> </u>	0.35	15	M16×1	3 4	III (FL)
0.15	0.1	0.02	-	-	\otimes	0.1 0.6	8 23	M16×1	3 4	III (FL)
0.16	0.12	0.06		-	\otimes	0.35	15	M16×1	3 4	III (FL)
0.15	0.1	0.02			\otimes	0.1 0.6	8 23	M16×1	3 4	III (FL)
0.28	0.2	0.11		-	\otimes	0.35	15	M16×1	3 4	III (FL)
0.27	0.19	0.08	-	-	\otimes	0.1 0.7	8 27	M16×1	3 4	III (FL)
0.53	0.35	0.22	0.1	-	\otimes	0.35	15	M16×1	5 7.5	III (FL)
0.5	0.33	0.19	0.07	-	$\overline{\mathbf{O}}$	0.1 0.7	8 27	M16×1	5 7.5	III (FL)
0.5	0.35	0.2	0.07	0.01	\otimes	0.35	15	M16×1	8 10	III (FL)
0.5	0.33	0.19	0.07	-	\otimes	0.1 0.7	8 27	M16×1	8 10	III (FL)
0.8	0.55	0.35	0.15	0.02	\otimes	0.35	15	M16×1	21 30	III (FL)
0.8	0.52	0.31	0.11	-	$\overline{\mathbf{O}}$	0.1 0.7	8 27	M16×1	21 30	III (FL)
0.9	0.73	0.5	0.32	0.15	\otimes	0.35	15	M16×1	5 7.5	III (FL)
0.9	0.73	0.5	0.3	0.13	\otimes	0.1 0.7	8 27	M16×1	5 7.5	III (FL)
0.9	0.63	0.35	0.13	-	\otimes	0.35	15	M16×1	42 56	III (FL)
0.85	0.6	0.32	0.12	-	\otimes	0.1 0.7	8 27	M16×1	42 56	III (FL)
-	-	-	-	-	9	0.1	6	-	-	I (NFL)
-	-	-	-	-	\otimes	0.35	15	-	-	III (FL)
-	-	-	-	-	\otimes	0.1 0.7	8 27	-	-	III (FL)
-	-	-	-	-	\bigcirc	0.1	6	-	3.5 5	I (NFL)
-	-	-	-	-	(0.1	6	-	6 9	I (NFL)
-	-	-	-	-	(0.1	6	-	14 19	I (NFL)
-	-	-	-	-	9	0.1	6	-	20 27	I (NFL)
-	-	-	-	-	9	0.1	6	-	3.5 5	I (NFL)
-	-	-	-	-	۲	0.1	6	-	9 13	I (NFL)
-	-	-	-	-	۲	0.1	6	-	13 17	I (NFL)
-	-	-	-	-	a	0.1	6	-	14 19	I (NFL)
-	-	-	-	-	a	0.1	6	-	17 27	I (NFL)
-	-	-	-	-	\otimes	0.35	15	M16×1	3.5 5	III (FL)
-	-	-	-	-	$\boldsymbol{\boldsymbol{\Theta}}$	0.35	15	M16×1	14 19	III (FL)
-	-	-	-	-	\otimes	0.35	15	M16×1	20 27	III (FL)
-	-	-	-	-	\otimes	0.35	15	M16×1	3.5 5	III (FL)
-	-	-	-	-	\otimes	0.35	15	M16×1	9 13	III (FL)
-	-	-	-	-	\otimes	0.35	15	M16×1	13 17	III (FL)
-	-			-	\otimes	0.35	15	M16×1	14 19	III (FL)
-	-	-	-	-	\otimes	0.35	15	M16×1	17 27	III (FL)
-	-			-	\otimes	0.35	15	M16×1	26 39	III (FL)
-	-	-	-	-	\otimes	0.35	15	M16×1	35 41	III (FL)
-	-	-	-	-	\otimes	0.35	15	M16×1	3 4.5	III (FL)
					\otimes	0.1 0.7	8 27	M16×1	3 4.5	III (FL)
				-	\otimes	0.35	15	M16×1	4.5 6	III (FL)
					\otimes	0.1 0.7	8 27	M16×1	4.5 6	III (FL)
	-	-		-	\otimes	0.35	15	M16×1	8.5 12	III (FL)
					\otimes	0.1 0.7	8 27	M16×1	8.5 12	III (FL)
		-	-	-	$\overline{\mathbf{O}}$	0.35	15	M16×1	19 26	III (FL)
-	-	-	-	-	\otimes	0.10.7	8 27	M16×1	19 26	III (FL)

-

.

100

• F

.

Julabo

to	Power requi- rement	USB interface	RS232 interface	Permissible ambient temperature	Usable bath opening	Dimensions W × L × H	Weight net	Model
	V / Hz / A			°C	W × L / D cm	cm	kg	
	230/50/12	yes	-	5 40	13 × 15 / 15	23 × 39 × 65	26	CD-200F
	230/50/12	yes	yes	5 40	13 × 15 / 15	23 × 39 × 65	25.7	CP-200F
	230/50/12	yes		5 40	13 × 15 / 15	$44 \times 41 \times 44$	25	CD-201F
	230/50/12	yes	yes	5 40	13 × 15 / 15	$44 \times 41 \times 44$	24.7	CP-201F
	230/50/12	yes	-	5 40	13 × 15 / 15	24 × 42 × 66	28	CD-300F
	230/50/12	yes	yes	5 40	13 × 15 / 15	$24 \times 42 \times 66$	27.7	CP-300F
	230/50/14	yes	-	5 40	22 × 15 / 15	33 × 47 × 69	36	CD-600F
	230/50/14	yes	yes	5 40	22 × 15 / 15	$33 \times 47 \times 69$	35.7	CP-600F
	230/50/14	yes	-	5 40	22 × 15 / 20	36 × 46 × 74	38.5	CD-601F
	230/50/14	yes	yes	5 40	22 × 15 / 20	$36 \times 46 \times 74$	38.5	CP-601F
	230/50/14	yes	-	5 40	26 × 35 / 20	39 × 62 × 75	52	CD-900F
	230/50/14	yes	yes	5 40	26 × 35 / 20	39 × 62 × 75	52	CP-900F
	230/50/14	yes	-	5 40	18×13/15	$42 \times 49 \times 70$	51.5	CD-1000F
	230/50/14	yes	yes	5 40	18× 13 / 15	$42 \times 49 \times 70$	51.5	CP-1000F
	230/50/14	yes	-	5 40	35 × 41 / 30	$45\times 64\times 95$	74	CD-1001F
	230/50/14	yes	yes	5 40	35 × 41 / 30	$45 \times 64 \times 95$	73.7	CP-1001F
	230/50-60/9	-	-	5 40	-	13.2 × 16 × 36.2	1.9	с
	230/50/10	yes	-	5 40	-	13.2 × 16 × 36.2	2.6	CD
	230/50/10	yes	yes	5 40	-	13.2 × 16 × 36.2	2.5	СР
	230/50-60/9	-	-	5 40	15 × 15 / 15	23 × 38 × 38	4.8	C-BT5
	230/50-60/9	-	-	5 40	23 × 15 / 15	$32 \times 38 \times 38$	3.9	C-BT9
	230/50-60/9	-	-	5 40	30 × 35 / 15	$38 \times 58 \times 38$	7	C-BT19
	230/50-60/9	-	-	5 40	30 × 35 / 20	$38 \times 58 \times 43$	7.2	C-BT27
	230/50-60/9	-	-	5 40	15 × 15 / 15	$23 \times 38 \times 41$	7.3	C-B5
	230/50-60/9	-	-	5 40	30 × 18 / 15	$38 \times 40 \times 42$	8.2	C-B13
	230/50-60/9	-	-	5 40	30 × 18 / 20	$38 \times 40 \times 47$	9.3	C-B17
	230/50-60/9	-	-	5 40	30 × 35 / 15	$38 \times 58 \times 42$	10.5	C-B19
	230/50-60/9	-	-	5 40	30 × 35 / 20	$38 \times 58 \times 47$	12	C-B27
	230/50/10	yes	-	5 40	15 × 15 / 15	23 × 38 × 38	5.7	CD-BT5
	230/50/10	yes	-	5 40	30 × 35 / 15	38 × 58 × 38	8	CD-BT19
	230/50/10	yes	-	5 40	30 × 35 / 20	38 × 58 × 43	8.1	CD-BT27
	230/50/10	yes	-	5 40	15 × 15 / 15	$23 \times 38 \times 41$	8.2	CD-B5
	230/50/10	yes	-	5 40	30 × 18 / 15	$38 \times 40 \times 42$	9.1	CD-B13
	230/50/10	yes	-	5 40	30 × 18 / 20	$38 \times 40 \times 47$	9.3	CD-B17
	230/50/10	yes	-	5 40	30 × 35 / 15	38 × 58 × 42	11.5	CD-B19
	230/50/10	yes	-	5 40	30 × 35 / 20	$38 \times 58 \times 47$	13	CD-B27
	230/50/10	yes	-	5 40	66 × 32 / 15	91 × 36 × 43	21	CD-B33
	230/50/10	yes	-	5 40	33 × 30 / 30	$54 \times 34 \times 57$	18	CD-B39
	230/50/10	yes		5 40	13 × 15 / 15	23 × 41 × 42	8.8	CD-BC4
	230/50/10	yes	yes	5 40	13 × 15 / 15	$23 \times 41 \times 42$	8.5	CP-BC4
	230/50/10	yes		5 40	13 × 15 / 20	$24 \times 44 \times 47$	10	CD-BC6
	230/50/10	yes	yes	5 40	13 × 15 / 20	$24 \times 44 \times 47$	10	CP-BC6
	230/50/10	yes		5 40	22 × 15 / 20	33 × 49 × 47	12.2	CD-BC12
	230/50/10	yes	yes	5 40	22 × 15 / 20	$33 \times 49 \times 47$	12	CP-BC12
	230/50/10	yes		5 40	26 × 35 / 20	39 × 62 × 48	19	CD-BC26
	230/50/10	yes	yes	5 40	26 × 35 / 20	39 × 62 × 48	19	CP-BC26

Unless otherwise indicated, all data relates to the operation at nominal voltage and frequency and +20 °C ambient temperature. Cooling capacity measured according to DIN 12876-2. Information regarding used refrigerants can be found at www.julabo.com.

Voltage Options

Model	Order No.	Available voltage options / Heating capacity kW						
		230 V 50 Hz	208-230 V 60 Hz	208-230 V 50-60 Hz	100-115 V 50-60 Hz	115 V 60 Hz	100 V 50 - 60 Hz	200 V 50 - 60 Hz
CD-200F	9 012 701	2	1.6 - 2	-	-	1	0.8	-
CD-201F	9 012 702	2	1.6 - 2	-	-	1	0.8	-
CD-300F	9 012 703	2	1.6 - 2	-	-	1	0.8	-
CD-600F	9 012 704	2	1.6 - 2	-	-	1	0.8	-
CD-601F	9 012 705	2	1.6 - 2	-	-	1	0.8	-
CD-900F	9 012 706	2	1.6 - 2	-	-	1	-	1.5
CD-1000F	9 012 707	2	1.6 - 2	-	-	1	-	1.5
CD-1001F	9 012 708	2	1.6 - 2	-	-	-	-	1.5
CP-200F	9 013 701			1.6 - 2		1	0.8	-
CP-201F	9 013 702			1.6 - 2		1	0.8	-
CP-300F	9 013 703	2	1.6 - 2			1	0.8	-
CP-600F	9 013 704			1.6 - 2		1	0.8	1.5
CP-601F	9 013 705			1.6 - 2		1	0.8	1.5
CP-900F	9 013 706			1.6 - 2		1	-	1.5
CP-1000F	9 013 707			1.6 - 2		1	-	1.5
CP-1001F	9 013 708			1.6 - 2		-	-	1.5
C	9 011 000	-	-	1.6 - 2	0.8 - 1	-	-	-
CD	9 012 000	2	1.6 - 2.	-	-	1	0.8	-
СР	9 013 000							
C-BT5	9 011 305	-	-	1.6 - 2	0.8 - 1-0	-	-	-
C-BT9	9 011 309	-	-	1.6 - 2	0.8 - 1	-	-	-
C-BT19	9 011 319	-	-	1.6 - 2	0.8 - 1	-	-	-
C-BT27	9 011 327	-	-	1.6 - 2	0.8 - 1	-	-	-
C-85	9 011 405	-	-	1.6 - 2	0.8 - 1	-	-	-
C-B13	9011413	-	-	1.0 - 2	0.8 - 1	-	-	-
С-В17	9011417	-	-	1.0 - 2	0.8 - 1	-	-	-
C-B19	9011419	-	-	1.0 - 2	0.8 - 1	-	-	-
	9 011 427	-	-	1.0 - 2	0.0 - 1	-	-	-
CD-BTJ	9 012 303	2	1.0 - 2	-	-	1	0.8	-
CD-BT27	9 012 377	2	1.0 - 2			1	0.0	
CD-B5	9 012 405	2	1.6 - 2		_	1	0.8	-
CD-B13	9 012 413	2	1.6 - 2		_	1	0.8	-
CD-B17	9 012 417	2	1.6 - 2	-	_	1	0.8	-
CD-B19	9 012 419	2	1.6 - 2	-	-	1	0.8	-
CD-B27	9 012 427	2	1.6 - 2	-	_	1	0.8	-
CD-B33	9 012 433	2	1.6 - 2	-	-	1	0.8	-
CD-B39	9 012 439	2	1.6 - 2	-	-	1	0.8	-
CD-BC4	9 012 504	2	1.6 - 2		-	1	0.8	-
CD-BC6	9 012 506	2	1.6 - 2	-	-	1	0.8	-
CD-BC12	9 012 512	2	1.6 - 2	-	-	1	0.8	-
CD-BC26	9 012 526	2	1.6 - 2	-	-	1	0.8	-
CP-BC4	9 013 304			1.6 - 2	0.8 - 1			1.5
CP-BC6	9 013 306			1.6 - 2	0.8 - 1			1.5
CP-BC12	9 013 312			1.6 - 2	0.8 - 1			1.5
CP-BC26	9 013 326			1.6 - 2	0.8 - 1			1.5

Unless otherwise indicated, all data relates to the operation at nominal voltage and frequency and +20 °C ambient temperature. Cooling capacity measured according to DIN 12876-2. Information regarding used refrigerants can be found at www.julabo.com.

Lesoshoppe Sdn Bhd (Shah Alam)

Elite Industrial Park, 12, Jalan Gitar 33/3, Seksyen 33, 40400 Shah Alam, Selangor Phone : +603-51212673

Lesoshoppe Sdn Bhd (Penang)

Plot 85B, Lintang Bayan Lepas 9, Bayan Lepas Industrial Park, Phase 4, 11900 Penang. Phone : +604-6432080

Lesoshoppe Sdn Bhd (Johor)

No-19, Jalan Cantik 3, Taman Pelangi Indah, 81800 Ulu Tiram, Johor. Phone : +607-8619511

Lesoshoppe Sdn Bhd (Sarawak)

9th Floor, Bangunan Binamas, Jalan Padungan, 93100 Kuching, Sarawak. Phone : +6082-549721

Lesoshoppe Sdn Bhd (Sabah)

No.1-2-1B, 2nd Floor, Block B, Kolam Centre Phase 2, Jalan Lintas, Luyang, 88300 Kota Kinabalu, Sabah Phone : +60168398627

Email : enquiry@ lesoshoppe.com

Lesoshoppe.com

RECIRCULATING COOLERS/ CHILLERS

Product Characteristics & Functions

Display

Easy to read

Large LED temperature display for actual value and setpoint (display resolution 0.1 $^{\circ}\text{C}$)

A perfect view

Ample, easy to read VFD Comfort display for simultaneous display of 3 values, warning functions, high temperature cut-off, pump stages (display resolution 0.01 °C)

Filling level Filling volume display

Clear Comfortable, splash-proof control panel

Temperature Control

PID 1

Precise PID Temperature control with set control parameters, temperature stability $\pm 0.02 \dots \pm 0.2$ °C

For higher demands

PID Temperature control with drift compensation and adjustable parameters, improved temperature stability for external applications, temperature stability ± 0.01 °C internal, $<\pm 0.1$ °C external

For perfect results

'Intelligent Cascade Control', automatic & self-optimizing adjustment of PID control parameters, temperature stability ± 0.005 °C internal, < ± 0.05 °C external

Full control

'Temperature Control Features' for individual optimization, access to all important control parameters, additional settings for band limit, limits, co-speed factor, etc.

Direct control from external application

External Pt100 sensor connection for highly precise measurement and control directly in the external application

Highest measuring accuracy

'Absolute **T**emperature **C**alibration' for compensation of a temperature difference, **3**-point calibration

Refrigeration Technology

Consistent cooling capacity Easily removable venting grid for quick and easy dust removal

100 % cooling capacity 'Active Cooling Control' for full utilization of the cooling capacity available throughout the entire working temperature range, fast cool-

Technical Features

stages

Clever pump system Reliable and consistent pump capacity, electronically adjustable pump

Serial connection RS232 interface for PC connection, e.g. for data communication

and recording of measured values

down even at higher temperatures

Easy program control

Integrated programmer for the execution of time and temperature dependent profiles, 1 temperature profile with 10 steps max., with real time clock

Connection of additional equipment

Stakei connections for solenoid valve, HSP booster pump and HST booster heater

Warning & Safety Functions

Early warning system for low liquid level

Maximum safety for applications, optical and audible alarm, allows user to refill bath fluid before the unit shuts down

Early warning system for high/low temperature Maximum safety for applications, optical and audible alarm convertible to automated cut-off function

Enhanced protective function Maximum safety, adjustable high temperature cut-off or dry-running protection, additional display of setpoints permits easy and precise adjustments

For flammable bath fluids Class III (FL) according to DIN 12876-1

The icons can be found on the intro pages of each product group.

Recirculating Coolers/Chillers

AWC100	6
F Series	7
FL Series8-	13
FC Series14-	17
SemiChill Series18-	21
Accessories22-	29
Advantages at a Glance	37

The recirculating coolers of the F Series have very low procurement costs and convince with robust technology for continuous operation:

- Up to 1000 W of cooling capacity
- Compact design
- Easy access filling
- Level indicator
- May be used with water, water-glycol, JULABO Thermal G

AWC100

+20 °C ... +40 °C Air-to-water recirculating cooler

Ideal for simple cooling tasks: The AWC100 requires very little space and has a very low procurement cost.

FL Series

The recirculating coolers of the FL Series are suited for a wide range of cooling tasks:

- Up to 20 kW of cooling capacity
- Easy access filling from above
- Feed pressure indicator (from FL1201) and level indicator
- Large compensation volume
- Permissible return temperature up to +80 °C
- May be used with water, water-glycol, Thermal bath fluid

The removable venting grid makes it easy to clean the condenser. As a result, the instrument always delivers its full cooling capacity.

Julabo

FC Series

FC Series -25 °C ... +80 °C 11 models for heating and cooling tasks with up to 2.5 kW of cooling capacity

FC models offer high temperature stability and are also equipped with integrated heating:

- Up to 2.5 kW of cooling capacity
- 1.2 kW of heating capacity
- Extended working temperatures up to +80 $^{\circ}\mathrm{C}$
- Adjustable feed/return temperature ratio
- Filling level indicator
- Two LED displays

Models FC1200T, FC1600T, FCW2500T

- External Pt100 sensor connection
- Analog connections for external programming and temperature recorder

on models FC1200T, FC1600T, FCW2500T

Sophisticated electronics with digital and analog connections for RS232, standby, alarm, external Pt100 sensor, temperature recorder, programming.

SemiChill Series

SemiChill Series -20 °C ... +130 °C 5 basic models for industrial applications up to 10 kW of cooling capacity, customizable

The SemiChill models are characterized by maximum reliability in continuous operation and under harsh environmental conditions. The modular concept permits custom configurations according to your requirements:

- Five basic models, individually configurable
- Up to 10 kW of cooling capacity
- Up to 12 kW of heating capacity
- Seal-free immersion pumps, maintenance-free and electronically adjustable
- Feed pressure indicator and level indicator
- Overload protection for pump motor and refrigeration unit

Air-to-Water Recirculating Cooler AWC100

for working near ambient temperature

The AWC100 model requires very little space and has a very low procurement cost.

- Plug it in, switch it on, and you're ready to go
- Whisper quiet
- Saves energy (compressor-free design)
- Water loop cooled by fan air
- Uniform pump capacity
- Cooling performance adjustable in two steps
- Filling level indicator

Ambient temperature: +20 °C

AWC100 is designed to cool water in closed loops. The unit permanently removes heat from water as it flows through the machine.

Applications

Cooling of Peltier elements, particularly for automated analysis units and CCD cameras, polarimeters, refractometers, electrophoresis chambers, condensers for glass apparatus

AWC100			
Order No.	9 630 10)	
Model	AWC100		
Working temperature range °C $^{1)}$	+20 +4	0	
Temperature stability °C	-		
Cooling capacity ¹⁾ W Stage 0	+20 °C 400	+10 °C 220	+5 °C 120
Stage 1	550	300	180
Pump capacity	l/min	2.9	
Flow rate / Pressure	bar	0.2	
Filling volume liters	0.9		
Dimensions cm	$\begin{array}{l} W\timesL\timesH\\ 20\times34\times\end{array}$	30	

 Cooling capacity depends on the temperature differential between the return flow and ambient environment. Included in delivery: 2 barbed fittings each for tubing 8 and 10 mm ID (pump connections M10x1 female)

Example for determining cooling capacity

Ambient temperature: $+20 \degree$ C Return temperature: $+30 \degree$ C Δ T: $+10 \degree$ C Cooling capacity (stage 1): 300 W

Compact Recirculating Coolers

for simple cooling tasks

JULABO F models require very little space and have very low procurement costs.

Recirculating coolers of the F Series are a great way to replace costly tap water and are ideal for basic cooling tasks.

- Environmentally-friendly operation with low energy consumption
- Compact design
- Splash-proof membrane keypad with LED temperature display
- Straightforward filling and draining
- Filling level indicator
- May be used with water, water-glycol, JULABO Thermal G

For cooling of

- Rotary evaporators
- Kjeldahl instruments
- Measuring cells
- Automated analysis systems
- CCD cameras
- Polarimeters, refractometers
- Condensers for glass apparatus
- Calorimeters
- Soxhlet apparatuses

Included in delivery with F250: 2 barbed fittings each for tubing 8 and 10 mm ID (pump connections M10x1 female) Included in delivery with F500, F1000: 2 barbed fittings each for tubing 8 and 12 mm ID (pump connections M16x1 male)

F250			
Order No.	9 620 025		
Model	F250		
Working temperature range °C	-10 +40		
Temperature stability °C	±0.5		
	+20 °C 0.25	+10 °C 0.22	+5 °C 0.21
	0 °C 0.18	-5 °C 0.09	-10 °C
Pump capacity	l/min	15	
Flow rate / Pressure	bar	0.35	
Filling volume liters	1.7 2.6		
Dimensions cm	$\begin{array}{l} W\timesL\timesH\\ 24\times40\times\end{array}$	52	

F500			
Order No.	9 620 050)	
Model	F500		
Working temperature range °C	0+40		
Temperature stability °C	±0.5		
Cooling capacity kW	+20 °C 0.5	+10 °C 0.4	+5 °C 0.3
	0 °C 0.25	-5 °C -	-10 °C
Pump capacity	l/min	24	
Flow rate / Pressure	bar	0.5	
Filling volume liters	5 7.5		
Dimensions cm	$\begin{array}{l} W\timesL\timesH\\ 37.5\times44 \end{array}$	× 59	

F1000			2
Order No.	9 620 100)	
Model	F1000		
Working temperature range °C	0+40		
Temperature stability °C	±0.5		
Cooling capacity kW	+20 °C 1	+10 °C 0.7	+5 °C 0.55
	0 °C 0.35	-5 °C	-10 °C
Pump capacity	l/min	23	
Flow rate / Pressure	bar	1	
Filling volume liters	7 9.5		
Dimensions cm	$\begin{array}{l} W\timesL\timesH\\ 37.5\times49 \end{array}$	× 64	

FL Recirculating Coolers

compact models with up to 1.7 kW of cooling capacity for installation below a lab bench

The compact FL models are suited for a wide variety of cooling tasks. Installation under a lab bench saves valuable space. 2 variants: Air-cooled (FL) and water-cooled (FLW).

- Easy filling from above
- Feed pressure indicator (FL1201 and above) and level indicator (all models)
- Large compensation volume
- Circulating pumps designed for continuous operation
- Permissible return temperature up to +80 $^{\circ}\mathrm{C}$
- Low liquid level protection with visual and acoustic signals
- May be used with water, water-glycol, Thermal bath fluid
- Overload protection for pump motor and cooling machine

Pump capacity

Included in delivery: 2 barbed fittings each for tubing 8 and 12 mm ID (pump connections M16x1 male) 2 barbed fittings for tubing $\frac{3}{4}$ " ID with models FL1203 and FL(W)1703 (pump connections G $\frac{3}{4}$ " male)

FLOUI			
Order No.	9 661 006		
Model	FL601		
Working temperature range °C	-20 +40		
Temperature stability °C	±0.5		
Cooling capacity kW	+20 °C 0.6	+10 °C 0.5	0 °C 0.4
	-5 °C 0.37	-10 °C 0.33	-20 °C 0.2
Pump capacity	l/min	23	
Flow rate / Pressure	bar	1	
Filling volume liters	5.5 8		
Dimensions cm	$ W \times L \times H $	62	

FLW1701

FLW1701	-		
Order No.	9 671 017		
Model	FLW1701		
Working temperature range °C	-20 +40		
Temperature stability °C	±0.5		
Cooling constitution	+20 °C 1.7	+10 °C 1.5	0 °C 1.1
	-5 °C 0.98	- 10 °C 0.85	-20 °C 0.4
Pump capacity	l/min	23	
Flow rate / Pressure	bar	1	
Filling volume liters	12 17		
Dimensions cm	$\begin{array}{l} W\timesL\timesH\\ 50\times76\times\end{array}$	64	

Order No.	9 661 017		
Model	FL1701		
Working temperature range °C	-20 +40		
Temperature stability °C	±0.5		
Cooling capacity kW	+20 °C 1.7	+10 °C 1.5	0 °C 1.1
Cooling capacity KW	-5 °C 0.98	-10 °C 0.85	-20 °C 0.4
Pump capacity	l/min	23	
Flow rate / Pressure	bar	1	
Filling volume liters	12 17		
Dimensions cm	$W \times L \times H$ 50 × 76 ×	64	

FLW1/03			
Order No.	9 673 017		
Model	FLW1703		
Working temperature range °C	-20 +40		
Temperature stability °C	±0.5		
Cooling capacity kW	+20 °C 1.7	+10 °C 1.4	0 °C 1
	-5 °C 0.88	-10 °C 0.75	-20 °C 0.3
Pump capacity	l/min	40	
Flow rate / Pressure	bar	0.5 - 3	3
Filling volume liters	12 17		
Dimensions cm	$W \times L \times H$ 50 × 76 ×	64	
· · · · · · · · · · · · · · · · · · ·	••••••	••••	• • • • • • •

.

FL1703	-		
Order No.	9 663 017		
Model	FL1703		
Working temperature range °C	-20 +40		
Temperature stability °C	±0.5		
Cooling capacity kW	+20 °C 1.7	+10 °C 1.4	0 °C 1
	-5 °C 0.88	-10 °C 0.75	-20 °C 0.3
Pump capacity	l/min	40	
Flow rate / Pressure	bar	0.5 - 3	}
Filling volume liters	12 17		
Dimensions cm	$W \times L \times H$ 50 × 76 ×	64	

FL1203	-	3	4	*
Order No.	9 663 012			(
Model	FL1203			i
Working temperature range °C	-20 +40			• \ • r
Temperature stability °C	±0.5			1 5
	+20 °C 1.2	+10 °C 0.9	0 °C 0.8	*
	-5 °C 0.65	-10 °C 0.5	-20 °C 0.2	*
Pump capacity	l/min	40		: F
Flow rate / Pressure	bar	0.5 -	3	F
Filling volume liters	12 17			F
Dimensions cm	$\begin{array}{l} W\timesL\timesH \\ 50\times76\times\end{array}$	64		[

.......

FL Recirculating Coolers

powerful models with up to 4.3 kW of cooling capacity, tower version

The FL models shown here have higher cooling capacity, powerful circulating pumps, and internal bath volumes of up to 30 liters. 2 variants: Air-cooled (FL) and water-cooled (FLW).

- Powerful circulating pumps up to 60 l/min; 6 bar
- By-pass valve to adjust pump pressure
- Rollers make it easy to move the units
- Early warning function when condenser is dirty
- Overload protection for pump motor and cooling machine
- Stainless steel bath tank
- BlackBox function with error memory for remote diagnosis
- Stakei connection for connecting a solenoid valve

Applications

Rotary evaporators, bio-reactors/fermenters, Soxhlet apparatuses, distillation systems, vacuum systems, gas chromatographs, spectrometers, semiconductor applications, metering and adhesive technology, diffusion pumps, mass spectrometers, electron microscopes

Filling level indicator for all models

Practical recessed grip

Pump capacity

Bath fluid: water

Included in delivery: 2 barbed fittings for tubing $\frac{3}{4}$ " ID with models FL/FLW2503 and FL/FLW4003 (pump connections G $\frac{3}{4}$ " male). 2 barbed fittings for tubing 1" ID with models FL/FLW2506 and FL/FLW4006 (pump connections G $\frac{1}{4}$ " male)

FLW2506			
Order No.	9 676 025		
Model	FLW2506		
Working temperature range °C	-15 +40		
Temperature stability °C	±0.5		
Cooling conscitution	+20 °C 2.5	+10 °C 1.9	0 °C 1
Cooling capacity KW	-5 °C 0.65	-10 °C 0.3	-20 °C
Pump capacity	l/min	60	
Flow rate / Pressure	bar	0.5 - 6	5
Filling volume liters	24 30		
Dimensions cm	$\begin{array}{l} W\timesL\timesH \\ 60\times76\times\end{array}$	115	
			• • • • • •

FL2506			
Order No.	9 666 025	5	
Model	FL2506		
Working temperature range °C	-15 +40		
Temperature stability °C	±0.5		
Cooling constitute/W	+20 °C 2.5	+10 °C 1.9	0 °C 1
	-5 °C 0.65	-10 °C 0.3	-20 °C
Pump capacity	l/min	60	
Flow rate / Pressure	bar	0.5 - 6	5
Filling volume liters	24 30		
Dimensions cm	$\begin{array}{l} W\timesL\timesH \\ 60\times76\times\end{array}$	115	

• • •	FLW4003	-		
•	Order No.	9 673 040		
•	Model	FLW4003		
• • •	Working temperature range °C	-20 +40		
•	Temperature stability °C	±0.5		
• • •	Cooling conscitute/W	+20 °C 4.3	+10 °C 3	0 °C 2.2
• • •		-5 °C 1.75	-10 °C 1.3	-20 °C 0.45
•	Pump capacity	l/min	40	
•	Flow rate / Pressure	bar	0.5 - 3	;
•	Filling volume liters	24 30		
• • •	Dimensions cm	$\begin{array}{l} W \times L \times H \\ 60 \times 76 \times \end{array}$	115	

000

Pump capacity Flow rate / Pressure

Filling volume liters

Dimensions cm

	FL4003	-	-	1		
	Order No.	9 663 040				С
	Model	FL4003			:	٨
0	Working temperature range °C	-20 +40				ra
	Temperature stability °C	±0.5			•	T S'
0000	Cooling constitution	+20 °C ₄	+10 °C 3.4	0 °C 2.4	•	~
		-5 °C 1.95	-10 °C 1.5	-20 °C 0.65	• • •	
	Pump capacity	l/min	40		:	P
	Flow rate / Pressure	bar	0.5 - 3	3	:	F
	Filling volume liters	24 30				Fi
	Dimensions cm	$\begin{array}{l} W\timesL\timesH \\ 60\times76\times\end{array}$	115			D

FLW4006	-		
Order No.	9 676 040		
Model	FLW4006		
Working temperature range °C	-15 +40		
Temperature stability °C	±0.5		
	+20 °C ₄	+10 °C 3	0 °C 1.7
	-5 °C 1.20	-10 °C 0.7	-20 °C
Pump capacity	l/min	60	
Flow rate / Pressure	bar	0.5 - 6	5
Filling volume liters	24 30		
Dimensions cm	$\begin{array}{l} W\timesL\timesH \\ 60\times76\times\end{array}$	115	

FL4006			
Order No.	9 666 040		
Model	FL4006		
Working temperature range °C	-20 +40		
Temperature stability °C	±0.5		
	+20 °C ₄	+10 °C 2.9	0 °C 1.9
Cooling capacity KW	-5 °C 1.40	-10 °C 0.9	-20 °C 0.05
Pump capacity	l/min	60	

bar

24 ... 30

 $W \times L \times H$

0.5 - 6

FL Recirculating Coolers

very powerful units, up to 20 kW of cooling capacity

The powerful FL models are suitable for a wide range of cooling tasks in industrial environments, such as removal of large process heat. 2 variants: Air-cooled (FL) and water-cooled (FLW).

- High cooling capacity of up to 20 kW
- Powerful circulating pumps
- Large power reserves with all applications
- Early warning function when condenser is dirty
- Low water consumption (on FLW models)
- Overload protection for pump motor and cooling machine
- Stainless steel bath tank
- BlackBox function with error memory for remote diagnosis
- Stakei connection for connecting a solenoid valve or a booster pump

Included in delivery: 2 Barbed fittings for tubing 1" ID (pump connections G $1\frac{1}{4}$ " male)

Rollers add flexibility

Pump pressure indicator for models from FL1201

Drain tap located behind removable venting grid

Pump pressure adjustable for models from 3 bar

Pump capacity Bath fluid: water

FLVV/UU0			
Order No.	9 676 070		
Model	FLW7006		
Working temperature range °C	-20 +40		
Temperature stability °C	±0.5		
	+20 °C 7.4	+10 °C 7	0 °C 5.5
Cooling capacity kw	-5 °C 4.30	-10 °C 3.1	-20 °C 1.3
Pump capacity	l/min	60	
=			
Flow rate / Pressure	bar	0.5 - 6	5
Flow rate / Pressure Filling volume liters	bar 39 47	0.5 - (5
Flow rate / Pressure Filling volume liters Dimensions cm	bar 39 47 W × L × H 78 × 85 ×	0.5 - (5

FL7006			
Order No.	9 666 070		
Model	FL7006		
Working temperature range °C	-20 +40		
Temperature stability °C	±0.5		
Cooling conscitute/W	+20 °C 7	+10 °C 6.4	0 °C 5.1
	-5 °C 4.05	-10 °C 3	-20 °C 1.55
Pump capacity	l/min	60	
Flow rate / Pressure	bar	0.5 -	6
Filling volume liters	39 47		
Dimensions cm	$\begin{array}{l} W\timesL\timesH\\ 78\times85\times\end{array}$	148	

	FLW11006	-		
•	Order No.	9 676 110		
	Model	FLW11006	5	
	Working temperature range °C	-20 +40		
	Temperature stability °C	±0.5		
	Cooling constitution	+20 °C 11.5	+10 °C 9	0 °C 7.3
		-5 °C 6.05	-10 °C 4.8	-20 °C 2.7
	Pump capacity	l/min	60	
	Flow rate / Pressure	bar	0.5 - 6	5
	Filling volume liters	39 47		
	Dimensions cm	$\begin{array}{l} W\timesL\timesH \\ 78\times85\times\end{array}$	148	

	0					
l	• • • • •	FL11006			2	•••••••••••••••••••••••••••••••••••••••
	•	Order No.	9 666 110	1		
	•	Model	FL11006			•
	• • • •	Working temperature range °C	-20 +40			*
		Temperature stability °C	±0.5			•••••••••••••••••••••••••••••••••••••••
	• • • • •	Cooling capacity kW	+20 °C 11	+10 °C 9	0 °C 7.5	•
2		Cooling capacity KW	-5 °C 6.25	-10 °C ₅	-20 ℃ 3	•
	•	Pump capacity	l/min	60		*
	•	Flow rate / Pressure	bar	0.5 - (6	
		Filling volume liters	39 47			•
		Dimensions cm	$\begin{array}{l} W\timesL\timesH \\ 78\times85\times\end{array}$	148		*
	Ψ.					

FLW20006			2
Order No.	9 676 200		
Model	FLW20006		
Working temperature range °C	-25 +40		
Temperature stability °C	±0.5		
Cooling constitution	+20 °C 20	+10 °C 15	0 °C 12
	-5 °C 9.50	-10 °C 7	-20 °C 3
Pump capacity	l/min	80	
Flow rate / Pressure	bar	0.8 - 6	5
Filling volume liters	15 37		
Dimensions cm	$\begin{array}{l} W\timesL\timesH\\ 95\times115\times\end{array}$	161	

....

FL20006	-	-	
Order No.	9 666 200		
Model	FL20006		
Working temperature range °C	-25 +40		
Temperature stability °C	±0.5		
Cooling constitution	+20 °C 20	+10 °C 15	0 °C 10
	-5 °C 8	-10 °С б	-20 °C 2.5
Pump capacity	l/min	80	
Flow rate / Pressure	bar	0.8 -	6
Filling volume liters	15 37		
Dimensions cm	$W \times L \times H$ 95 × 115 ×	< 161	

FC Recirculating Coolers

for heating and cooling tasks

FC models offer high temperature stability and feature integrated heating in addition. 2 variants: Air-cooled (FC) and water-cooled (FCW).

- Extended working temperatures up to +80 °C
- Two LED displays
- Adjustable feed/return temperature ratio
- Filling level indicator

Pump capacity

What cooling capacity do you need for your application?

The JULABO temperature control specialists can already calculate an ideal cooling capacity for you based on little data. JULABO merely needs three values, which you can determine easily for your application in most cases:

| 1

Temperature of the cooling water prior to entering the application

| 2

Temperature of the cooling water after exiting the application

| 3

Cooling water flow rate in liters per minute

Send these three values to **info.de@julabo.com**. You will promptly receive a recommendation regarding the most suitable JULABO recirculating cooler.

FCW600

Order No.	9 601 060		
Model	FCW600		
Working temperature range °C	-20 +80		
Temperature stability °C	±0.2		
Heating capacity kW	1.2		
Cooling conscitute/W	+20 °C 0.6	+10 °C 0.47	+5 °C 0.4
Cooling capacity KW	0 °C 0.34	-10 °C 0.21	-20 °C
Pump capacity	l/min	20	
Flow rate / Pressure	bar	0.5	
Filling volume liters	6 8		
Dimensions cm	$\begin{array}{l} W\timesL\timesH\\ 35\times54\times\end{array}$	49	

FC600			
Order No.	9 600 060		
Model	FC600		
Working temperature range °C	-20 +80		
Temperature stability °C	±0.2		
Heating capacity kW	1.2		
Cooling constituteW	+20 °C 0.6	+10 °C 0.47	+5 °C 0.4
Cooling capacity KW	0 °C 0.34	- 10 °C 0.21	-20 °C
Pump capacity	l/min	20	
Flow rate / Pressure	bar	0.5	
Filling volume liters	6 8		
Dimensions cm	W × L × H 35 × 54 ×	49	

FCW600S Order No. 9 601 063 Model FCW600S Working temperature range °C -10 ... +80 Temperature ±0.2 stability °C Heating capacity kW 1.2 +20 °C +10 °C +5 °C 0.37 0.3 0.5 Cooling capacity kW 0 °C -10 °C -20 °C 0.235 0.1 Pump capacity Flow rate / Pressure l/min 22 1.2 bar Filling volume liters 6...8 $W \times L \times H$ Dimensions cm $35\times54\times49$

FC600S			
Order No.	9 600 063		
Model	FC600S		
Working temperature range °C	-10 +80		
Temperature stability °C	±0.2		
Heating capacity kW	1.2		
Cooling capacity kW	+20 °C 0.5	+10 °C 0.37	+5 °C 0.3
	0°C 0.235	- 10 °C 0.1	-20 °C
Pump capacity	l/min	22	
Flow rate / Pressure	bar	1.2	
Filling volume liters	6 8		
Dimensions cm	$\begin{array}{l} W\timesL\timesH\\ 35\times54\times\end{array}$	49	

Included in delivery: 2 barbed fittings each for tubing 8 and 12 mm inner dia. (pump connections M16x1 male)

FC Recirculating Coolers

for heating and cooling tasks

FC models offer high temperature stability and feature integrated heating in addition. 2 variants: Air-cooled (FC) and water-cooled (FCW).

- Models starting from a cooling capacity of 1.1 kW at +20 °C

- Heating capacity 1.2 kW

Models FC1200T, FC1600T, FCW2500T

External Pt100 sensor connection Analog connections for external programming and temperature recorder

Pump capacity

Included in delivery: 2 barbed fittings each for tubing 8 and 12 mm ID (pump connections M16x1 male)

			20
Order No.	9 600 120)	
Model	FC1200		
Working temperature range °C	-20 +80		
Temperature stability °C	±0.2		
Heating capacity kW	1.2		
Cooling conscitute W	+20 °C 1.3	+10 °C 0.95	+5 °C 0.75
cooling capacity KW	0 °C 0.66	-10 °C 0.37	-20 °C
Pump capacity	l/min	20	
Flow rate / Pressure	bar	0.5	
Filling volume liters	8 11		
Dimensions cm	$\begin{array}{l} W\timesL\timesH \\ 46\times61\times\end{array}$	49	

FC1200S

Order No.	9 600 123		
Model	FC1200S		
Working temperature range °C	-15 +80		
Temperature stability °C	±0.2		
Heating capacity kW	1.2		
Cooling conscitution	+20 °C 1.2	+10 °C 0.85	+5 °C 0.65
	0 °C 0.555	-10 °C 0.26	-20 °C
Pump capacity	l/min	22	
Flow rate / Pressure	bar	1.2	
Filling volume liters	8 11		
Dimensions cm	$W \times L \times H$ 46 × 61 ×	49	

Digital/analog connections

- ① RS232 interface
- ② Standby input
- ③ Alarm output

FC1200T, FC1600T, FCW2500T offer in addition:

- ④ External Pt100 sensor
- ⑤ External programming, Temperature recorder

			•
		*	
	+	1	
		/	

FC1600			
Order No.	9 600 160		
Model	FC1600		
Working temperature range °C	-20 +80		
Temperature stability °C	±0.2		
Heating capacity kW	1.2		
Cooling capacity kW	+20 °C 1.65	+10 °C 1.25	+5 °C 1
cooling capacity kw	0 °C 0.86	-10 °C 0.47	-20 °C
Pump capacity	l/min	20	
Flow rate / Pressure	bar	0.5	
Filling volume liters	8 11		
Dimensions cm	$ W \times L \times H 46 \times 61 \times 4 $	49	

FC1600S			
Order No.	9 600 163	;	
Model	FC1600S		
Working temperature range °C	-15 +80		
Temperature stability °C	±0.2		
Heating capacity kW	1.2		
Cooling conscitu kW	+20 °C 1.55	+10 °C 1.15	+5 °C 0.9
Cooling capacity KW	0 °C 0.755	-10 °C 0.36	-20 °C
Pump capacity	l/min	22	
Flow rate / Pressure	bar	1.2	
Filling volume liters	8 11		
Dimensions cm	$\begin{array}{l} W\timesL\timesH\\ 46\times61\times\end{array}$	49	

FC4CO

FCIGUUI			
Order No.	9 600 166		
Model	FC1600T		
Working temperature range °C	-15 +80		
Temperature stability °C	±0.2		
Heating capacity kW	1.2		
Cooling capacity kW	+20 °C 1.45	+10 °C 1.05	+5 °C 0.8
	0 °C 0.65	-10 °C 0.25	-20 °C -
Pump capacity	l/min	28	
Flow rate / Pressure	bar	3.5	
Filling volume liters	8 11		
Dimensions cm	$ W \times L \times H $	49	

SemiChill Recirculating Coolers

for highest requirements in industrial environments

The SemiChill models are characterized by maximum reliability in continuous operation and under harsh environmental conditions. All parts in contact with the bath fluid are made of stainless steel or high grade plastic. The modular design permits custom configurations according to your requirements.

- Five basic models, individually configurable
- High cooling capacity and strong circulating pumps
- Optional with integrated heater with a heating capacity of up to 12 $\ensuremath{\mathsf{kW}}$
- Seal-free immersion pumps, maintenance-free and electronically adjustable
- Pressure and filling level indicator
- Sealed filling port (70 mm Ø)
- Overload protection for pump motor and cooling machine
- Pump connections: NPT 3/4" male

Models with type designation

- "a" = air cooling
- "w" = water cooling

Applications

.

Semiconductor industry (etching processes, stainless steel chucks, PVD, sputtering, wet benches), packaging industry, plastics industry, metering and adhesive technology, jacketed reaction vessels, kilo labs, pilot plants

SC2500a				SC25
Order No.	Order in	dex on	page 21	Order No.
Model	SC2500a			Model
Working temperature range °C $^{1)}$	-20 +80	0		Working ten range °C 1)
Temperature stability °C	±0.1			Temperature stability °C
Cooling capacity kW	+20 °C 2.5	0 °C 1.5	-10 °C 0.9	Cooling capa kW
Pump capacity Flow rate / Pressure	l/min bar	Order i page 2	ndex on 1	Pump capac Flow rate / P
Filling volume liters	21 33			Filling volum
Dimensions cm	W × L × H 49 × 62 ×	H < 105		Dimensions

.....

¹⁾ Maximum working temperature range (standard working temperature range +5 ... +35 °C)

Pump capacity P3 Bath fluid: water

 $W \times L \times H$

 $59 \times 67 \times 112$

. . . .

•

-

Dimensions cm

.

Pump capacity P4 Bath fluid: water

•

SC5000a				SC5000w				SC1000	0w
Order No.	Order in	dex on	page 21	Order No.	Order ir	ndex on	page 21	Order No.	
Model	SC5000a	I		Model	SC5000\	N		Model	
Working temperature range °C $^{1)}$	-20 +1	30		Working temperature range °C ¹⁾	² -20 +1	30		Working tempera range °C ¹⁾	iture
Temperature stability °C	±0.1			Temperature stability °C	±0.1			Temperature stability °C	
Cooling capacity kW	+20 °C 5.0	0 °C 2.5	-10 °C 1.2	Cooling capacity kW	+20 °C 5.0	0 °C 2.5	-10 °C 1.2	Cooling capacity kW	
Pump capacity Flow rate / Pressure	l/min bar	Order ir page 2	ndex on 1	Pump capacity Flow rate / Pressure	l/min bar	Order i page 2	ndex on 1	Pump capacity Flow rate / Press	ure
Filling volume liters	43 60			Filling volume liters	43 60			Filling volume lite	ers

Dimensions cm

 $\mathsf{W}\times\mathsf{L}\times\mathsf{H}$

 $59 \times 67 \times 112$

. . . .

•

Order No.	Order index on page 21				
Model	SC10000	w			
Working temperature range °C $^{\mbox{\tiny 1)}}$	-20 +1	30			
Temperature stability °C	±0.1				
Cooling capacity kW	+20 °C 10.0	0 °C 5.0	-10 °C 2.5		
Pump capacity Flow rate / Pressure	l/min bar	Order ir page 2	ndex on I		
Filling volume liters	43 60				
Dimensions cm	W × L × H 59 × 67 ×	H ≪112			

SemiChill Series

Operating and control electronics	Eco	Professional
	Julebo	Julioto
Multi-Display (LED) temperature display	•	
VFD Comfort display with simultaneous display of 3 values		•
Keypad, splash-proof	•	•
PID temperature control	•	•
3-point calibration	•	•
Pump capacity adjustable in stages	•	•
RS232 interface	•	•
Stakei connections for power supply (e.g. shut-off valve)	•	•
Early warning system for low level, high and low temperature limits	•	•
High-temperature cut-off adjustable via display	•	•
Low liquid level protection with cut-off function	•	•
Classification III (DIN 12876-1)	•	•
Remote diagnosis function via integrated BlackBox	•	•
Connector for external Pt100 sensor for measuring and controlling the external system		•
Integrated programmer with real time clock for 1x10 program steps		•
Quantitative conductivity measurement and display, range 0.55 Ω/cm		•
Flow measurement and status display (pre-set limit value)*		•
Options for Professional electronics		
Freely scalable analog interfaces (E-PROG input, standby input, alarm output)		Optional
RS485 interface		Optional

* Professional electronics with analog connections required. Flow sensor not included.

Further options for working temperature, pump capacity, and heating Circulating pumps Model Working temperature range Heaters Standard Low/high Low/high Р3 P4 H0 H1 H12 Low H5 temp temp I temp II 33 l/min 43 l/min no 1 kW 5 kW 12 kW +5 °C ... +35 °C -20 °C ... +35 °C -20 °C ... +80 °C -20 °C ... +130 °C 3.5 bar 4.3 bar heater SC2500a \checkmark \checkmark Optional Optional Optional SC2500w SC5000a SC5000w \checkmark Optional¹⁾ Optional Optional \checkmark Optional \checkmark Optional Optional

 \checkmark This feature is already included with the basic model $^{1)}$ Cooling capacity reduced by 0.2 kW

Filter busingsPlease specify the desired filter option when ordering. Retrofitting is not possible. Housing is
mounted on the right side of the unit.D1DI-filter housing, plastic (up to +35 °C), incl. cartridgeD2DI-filter housing, stainless steel (up to +90 °C), incl. cartridgeM1Micro-filter housing, plastic (up to +35 °C), w/o cartridgeM2Micro-filter housing, stainless steel (up to +130 °C), w/o cartridge

Filter housings for DI-filter and micro-filter (optional)

SC10000w

Order index

for your custom unit configuration

Combine one of the five basic models with options of your choice. Please use the order index shown below to create the order number for your unit. The following example is for model SC5000a:

Custom unit configuration

- > Control electronics
- > Pump capacity
- Interfaces
 Heating capacity
- > Working temperature
- > Filter housings
- y

¹⁾ **Voltage version SC2500a, SC2500w** 230 V/50 Hz or 208-230 V/60 Hz

SC5000a, SC5000w, SC10000w 400 V (3 ph.)/50 Hz or 208-230 V (3 ph.)/60 Hz

JULABO Thermal Bath Fluids

JULABO Thermal bath fluids have been carefully chosen after long-term testing. They are ideally suited for all of your temperature control applications guaranteeing safe and reliable operation.

Choosing the proper bath fluid is critical for the results in temperature control. The viscosity, oxidation and heat transfer characteristics of the Thermal fluids are specifically matched with each JULABO temperature control instrument.

Advantages

- Wide temperature ranges
- Low viscosity
- High stability
- Good heat conductivity
- Minimum odor
- Low corrosion tendency
- Low toxicity
- Long shelf life

Working temperature range

Extended temperature range Thermal H10

Makes routine laboratory work easier.

JULABO Thermal bath fluids are delivered in containers with a handy drain tap.

	-	-	•
•	6	-	8
•		The second se	
		-	•
••••			

			•••	•
				•
•			41	
		1000	1	•
•		E.	1	
•		Actor	1	
•	1	1		
•		-		
· · ·				

Thermal G	
Order No. 5 liters	8 940 125
Order No. 10 liters	8 940 124
Working temperature range °C	-30 +80
Flash point °C	not applicable
Fire point °C	not applicable
Viscosity, (kinematic at +20 °C) mm²/s	4.07
Density (at +20 $^{\circ}\text{C}$) g/cm³	1.08
Pour point °C	-70
Boiling point °C	+108
Ignition temperature °C	+430
Color	light yellow

Thermal H5	
Order No. 5 liters	8 940 107
Order No. 10 liters	8 940 106
Working temperature range °C	-50 +105
Flash point °C	+124
Fire point °C	+142
Viscosity, (kinematic at +20 °C) mm²/s	5.66
Density (at +20 $^{\circ}\text{C}$) g/cm³	0.92
Pour point °C	-100
Boiling point °C	+288
Ignition temperature °C	+350
Color	clear

Thermal H10	
Order No. 5 liters	8 940 115
Order No. 10 liters	8 940 114
Working temperature range °C	(-40) -20 +180
Flash point °C	>+170
Fire point °C	+220
Viscosity, (kinematic at +20 °C) mm²/s	10.8
Density (at +20 $^{\circ}\text{C}$) g/cm³	0.94
Pour point °C	<-60
Boiling point °C	+288
Ignition temperature °C	+370
Color	clear

JULABO Thermal bath fluids based on silicon ...

... are chemically inert substances which do not affect metals like iron, copper, zinc, aluminum, chrome or nickel. Compared to other fluids, JULABO Thermal fluids have an extraordinarily high dielectric strength. When properly stored, the fluids will last for 12 months and longer as they are not susceptible to climatic influences.

JULABO Thermal bath fluids based on water-glycol ...

... (monoethyleneglycol with anti-corrosion additives) have excellent thermal characteristics and a low viscosity. In addition, they provide anti-freeze protection, i.e. they can be applied at temperatures below the freezing point of water.

More information on JULABO Thermal bath fluids ...

... in our brochure 'The Thermal Bath Fluids' at www.julabo.com.

Accessories

CR[®] tubing

Order No.	Description	Suitable for
8 930 008	1 m CR [®] tubing, 8 mm ID (-30 °C +120 °C)	AWC100, F250, FL300
8 930 010	1 m CR® tubing, 10 mm ID (-30 °C +120 °C)	AWC100, F250
8 930 012	1 m CR $^{\odot}$ tubing, 12 mm ID (-30 °C +120 °C)	FL300

Reinforced tubing

Order No.	Description	Suitable for
8 930 308	1 m reinforced tubing, 8 mm ID, pressure resistant (-40 °C +120 °C)	F500, F1000, FL601/1201/1701, FC models
8 930 312	1 m reinforced tubing, 12 mm/ $^{\prime}\!$ ID, pressure resistant (-40 °C +120 °C)	F500, F1000, FL601/1201/1701, FC models
8 930 319	1 m reinforced tubing, $34''$ ID, pressure resistant (-40 °C +120 °C)	FL(W)1203/1703/2503/4003
8 930 325	1 m reinforced tubing, 1" ID, pressure resistant (-40 °C +120 °C)	FL(W)2506/4006/7006/11006/20006

Tubing insulation

Order No.	Description	Suitable for
8 930 410	1 m insulation, 14 mm ID	CR® tubing 8 to 10 mm ID
8 930 412	1 m insulation, 18 mm ID	CR® tubing 12 mm ID, Reinforced tubing 8 mm ID
8 930 413	1 m insulation, 23 mm ID	Reinforced tubing 12 mm / 1/2" ID
8 930 419	1 m insulation, 29 mm ID	Reinforced tubing ¾" ID
8 930 425	1 m insulation, 35 mm ID	Reinforced tubing 1" ID

Tube clamps

Order No.	Description	Suitable for
8 970 480	2 Tube clamps, size 1	CR [®] tubing, 8 mm ID
8 970 481	2 Tube clamps, size 2	CR® tubing 10/12 mm ID, Reinforced tubing 8 mm ID
8 970 482	2 Tube clamps, size 3	Reinforced tubing 12 mm / 1/2" ID
8 970 483	2 Tube clamps, size 4	Reinforced tubing ¾" ID
8 970 484	2 Tube clamps, size 5	Reinforced tubing 1" ID

Twin and quad distributing adapters

Order No.	Description	Suitable for
8 970 470	Twin distributing adapter with barbed fittings for tubing 8 mm ID	F, FL, FC
8 970 472	Twin distributing adapter with barbed fittings for tubing 10 mm ID	F, FL, FC
8 970 471	Twin distributing adapter with barbed fittings for tubing 12 mm ID	F, FL, FC
8 970 476	Twin distributing adapter G $4\hspace{-0.1em}\rlap/\hspace{0.1em}$ " with barbed fittings for tubing $4\hspace{-0.1em}\rlap/\hspace{0.1em}$ " ID	FL(W)1203/1703/2503/4003
8 970 477	Twin distributing adapter G $1^{\prime\prime}$ with barbed fittings for tubing 1" ID	FL(W)2506/4006/7006/11006/20006
8 970 474	Quad distributing adapter (2 pieces), M16x1, with barbed fittings for tubing 8 mm or 12 mm / $\frac{1}{2}$ " ID	FC
8 970 520	Quad distributing adapter (2 pieces), M16x1, with barbed fittings for tubing 8 mm or 12 mm / $\frac{1}{2}$ " ID	F500, F1000, FL(W)601/1201/1701

Order No.	Description	Suitable for
8 970 522	Quad distributing adapter (2 pieces), G $3/4$ " female, with barbed fittings for tubing $3/4$ " ID	FL(W)1203/1703/2503/4003
8 970 524	Quad distributing adapter (2 pieces), G 1¼" female, with barbed fittings for tubing 1" ID	FL(W)2506/4006/7006/11006/20006

Connections/Adapters

Order No.	Description	Suitable for
8 890 036	2 Barbed fittings for tubing $\frac{1}{2}$ " ID to NPT $\frac{3}{4}$ " female	SemiChill
8 890 037	2 Barbed fittings for tubing 5/8" ID to NPT 3/4" female	SemiChill
8 890 038	2 Adapters NPT ¾" female to M16x1 male	SemiChill
8 890 040	2 Adapters G ¾" female to M16x1 male	FL(W)1203/1703/2503/4003
8 890 041	2 Adapters G 11/4" female to M16x1 male	FL(W)2506/4006/7006/11006/20006
8 890 042	2 Adapters G $ \rlap{4}''$ female to barbed fitting for tubing $\rlap{1}'\!\!/ "$ ID	FL(W)1203/1703/2503/4003
8 890 043	2 Adapters G $3\!\!\!4''$ female to barbed fitting for tubing $3\!\!\!4''$ ID	FL(W)1203/1703/2503/4003
8 890 044	2 Adapters G 11/4" female to barbed fitting for tubing 1/2" ID	FL(W)2506/4006/7006/11006/20006
8 890 045	2 Adapters G 11/4" female to barbed fitting for tubing 3/4" ID	FL(W)2506/4006/7006/11006/20006
8 890 046	2 Adapters G 11/4" female to barbed fitting for tubing 1" ID	FL(W)2506/4006/7006/11006/20006
8 890 047	2 Adapters G $34''$ female to NPT $12''$ male	FL(W)1203/1703/2503/4003
8 890 048	2 Adapters G ¾" female to NPT ¾" male	FL(W)1203/1703/2503/4003
8 890 049	2 Adapters G 11/4" female to NPT 1/2" male	FL(W)2506/4006/7006/11006/20006
8 890 050	2 Adapters G 11/4" female to NPT 3/4" male	FL(W)2506/4006/7006/11006/20006
8 890 051	2 Adapters G 11/4" female to NPT 1" male	FL(W)2506/4006/7006/11006/20006

Particle filters/Shut-off valves/Solenoid valve/Castor platform

Order No.	Description	Suitable for
8 970 905	Air filter	AWC100
8 970 906	Filter cartridge	AWC100
8 920 000	Particle filter for cooling water circuit (for water-cooled models)	FLW, FCW, SC5000w, SC10000w
8 970 456	Shut-off valve for loop circuit M16x1	F500, F1000, FL300/601/1201/1701, FC, FCW
8 970 454	Shut-off valve G ¾"	FL(W)1203/1703/2503/4003
8 970 458	Shut-off valve G 1¼"	FL(W)2506/4006/7006/11006/20006
8 980 701	Solenoid valve set for loop circuit (-10 °C +130 °C), M16x1	FC, FCW
8 910 045	Castor platform	F250
8 920 016	Micro-filter cartridge 10 micron	SemiChill with option M1
8 920 017	Micro-filter cartridge 25 micron	SemiChill with option M1
8 920 018	Micro-filter cartridge 40 micron	SemiChill with option M1
8 920 019	Micro-filter cartridge 100 micron	SemiChill with option M1
8 920 020	Micro-filter cartridge 250 micron	SemiChill with option M1
8 920 036	Micro-filter cartridge 10 micron	SemiChill with option M2
8 920 038	Micro-filter cartridge 40 micron	SemiChill with option M2
8 920 039	Micro-filter cartridge 100 micron	SemiChill with option M2
8 920 040	Micro-filter cartridge 250 micron	SemiChill with option M2
8 920 005	DI filter cartridge	DI-filter housing, plastic/stainless steel D1/D2
8 920 100	Drain tap, stainless steel, to empty bath easily	SemiChill
8 980 705	Solenoid valve set, 230 V/50-60 Hz, -10 +130 °C (Included in delivery: 1 solenoid valve and 1 back pressure valve)	SemiChill

Accessories

[°] • • • • • • [•] • [°]	

External Pt100 sensors and extension cables

Order No.	Description	Suitable for
8 981 003	$200 \times 6 \text{ mm } \emptyset$, stainless steel, 1.5 m cable	FC-T variant, SemiChill with professional electronics
8 981 006	$20 \times 2 \text{ mm } \emptyset$, stainless steel, 1.5 m cable	FC-T variant, SemiChill with professional electronics
8 981 010	$300 \times 6 \text{ mm}$ Ø, stainless steel, 1.5 m cable	FC-T variant, SemiChill with professional electronics
8 981 017	$200 \times 6 \text{ mm}$ Ø, stainless steel/PTFE coated, 3 m cable	FC-T variant, SemiChill with professional electronics
8 981 015	$300 \times 6 \text{ mm}$ Ø, stainless steel/PTFE coated, 3 m cable	FC-T variant, SemiChill with professional electronics
8 981 013	$600 \times 6 \text{ mm}$ Ø, stainless steel/PTFE coated, 3 m cable	FC-T variant, SemiChill with professional electronics
8 981 016	$900 \times 6 \text{ mm}$ Ø, stainless steel/PTFE coated, 3 m cable	FC-T variant, SemiChill with professional electronics
8 981 014	1200 \times 6 mm Ø, stainless steel/PTFE coated, 3 m cable	FC-T variant, SemiChill with professional electronics
8 981 020	M+R in-line Pt100 sensor, 2 connections M16x1 male	FC-T variant, SemiChill with professional electronics
8 981 103	Extension cable 3.5 m for Pt100 sensor	FC-T variant, SemiChill with professional electronics

Connection plugs and converters

Order No.	Description	Suitable for
8 980 131	External Pt100 sensor connector	FC-T variant, SemiChill with professional electronics
8 980 133	Standby connector, 3 pin	FC, SemiChill with professional electronics
8 980 135	Alarm connector, 5 pin	FL, FC, SemiChill with professional electronics
8 980 136	REG+EPROG connector, 6 pin	FC-T variant, SemiChill with professional electronics
8 980 137	Stakei connector	FC, SemiChill, from FL 2503
8 980 024	SCB converter box	FC, SemiChill

.

Wireless communication & Software

Order No.	Description	Suitable for
8 900 020	Profibus DP interface	FL, FC, SemiChill
8 900 024	RS485 interface	FL, FC, SemiChill
8 900 110	USB interface adapter cable, 2.5 m	FL, FC, SemiChill
8 901 102	EasyTEMP Software (free of charge at www.julabo.com)	FL, FC, SemiChill
8 901 105	EasyTEMP Professional Software, incl. USB Dongle	FL, FC, SemiChill
8 980 031	Ethernet/RS232 interface converter	FL, FC, SemiChill
8 980 032	4-EtherNet/RS232 converter	FL, FC, SemiChill
8 980 033	8-EtherNet/RS232 converter	FL, FC, SemiChill
8 980 034	WLAN/RS232 converter	FL, FC, SemiChill
8 980 035	2 Channel WLAN/RS232 converter	FL, FC, SemiChill
8 980 036	ATEX Tablet Agile X	FL, FC, SemiChill
8 980 073	RS232 interface cable, 2.5 m	FL, FC, SemiChill
8 980 074	RS232 interface cable, 5 m	FL, FC, SemiChill

Calibration and testing certificates

Order No.	Description	Suitable for
8 902 901	1-Point Manufacturer's Calibration Certificate for JULABO circulators	All models except AWC100
8 902 903	3-Point Manufacturer's Calibration Certificate for JULABO circulators	All models except AWC100
8 902 905	5-Point Manufacturer's Calibration Certificate for JULABO circulators	All models except AWC100
8 903 025	Manufacturer's Testing Certificate for JULABO refrigeration units	All models except AWC100 up to 1 kW cooling capacity (at +20 °C)
8 903 035	Manufacturer's Testing Certificate for JULABO refrigeration units	All models except AWC100 starting from 1 kW cooling capacity (at +20 °C)

IQ/OQ Documentation

Order No.	Description	Suitable for
2 310 120	IQ/OQ Documentation, Category 2	F, FL, FC
2 310 130	IQ/OQ Documentation, Category 3	SemiChill

Preventative maintenance contracts

Order No.	Description	Suitable for
2 350 100	Preventative Maintenance Contract Standard includes the follow- ing services: Visual inspection, technical diagnostics, read-out of error memory (BlackBox), testing of tube connections and bath fluid, thorough cleaning of performance-reducing contaminations, testing of control behavior (temperature stability), sensor calibration as needed, testing/ measuring of pump and cooling capacity (depending on model) and firmware update (if no hardware adjustment is required)	All models
2 350 110	Preventative Maintenance Contract Premium includes all services listed above as well as spare and wear parts and labor required for installation and replacement	All models

Booster Pump

The new JULABO magnetically coupled Booster Pump is the ideal solution to increase the pressure or flow rate in your application. The Booster Pump is specifically designed to be easily connected between various JULABO instruments and your application.

The Booster Pump can add 2.1 bar to your fluid pressure. The stainless steel design of the pump provides excellent resistivity against chemical effects. The pump design guarantees 100 % leakage free operation over an extraordinary temperature range of -90 °C ... +250 °C.

The Booster Pump is suitable for FC and SemiChill recirculating coolers $^{\star_{3)}}$

Pump connector cable for connection of the SBC converter box is included in the delivery.

(Measured in a fluid with a density of 1 kg/dm3)

Booster Pump (Magnetically Coupled)

Order No.	8 810 020		
Model Booster Pump			
Working temperature range °C	-90 250	-90 250	
Pump type	Centrifugal pump		
Material Pump / housing	Stainless steel		
Pump capacity Flow rate / Pressure	l/min bar	80 2.1 ^{*1)}	
Pump pressure adjustment	Manual		
Pump pressure display 2 manometers, for input and output press		out pressure	
Suitable fluids	Water-glycol, silicon oil, Fluorinert®		
Viscosity max. cSt.	50		
Fluid connectors	M30x1.5 male ^{$^{+2)}$}		
Mains power supply 208 - 230V ±10 % / 50-60 Hz		% / 50-60 Hz 1~	
Power consumption	1.85 A (208 V) / 2	A (230 V)	
Heat input W	230 at full motor	speed	
Control input	3-pin connector for SCB converter box		
Weight kg 13.2			
Dimensions cm	W × L × H 28 × 42.5 × 24		

 $^{\star1)}$ In addition to the pump pressure of the suitable JULABO

instrument.

*²⁾ Adapters may be required.

*³⁾ The JULABO SCB converter box (Order No. 8 980 024) is required.

Plate Heat Exchanger

Plate heat exchangers from JULABO are the ideal solution for applications, in which the bath fluid cannot be used directly in the temperature control instrument.

Depending on the application, this may be the case for example due to viscosity, pressure or material compatibility. In such situations, a plate heat exchanger ensures system separation between the temperature control instrument circuit and the application circuit, thus enabling the use of JULABO devices.

The heat exchangers are compact, professionally insulated and, thanks to our decades of experience, always optimally tailored to customer-specific requirements. This includes topics such as dimensioning, connections, performance characteristics or desired temperature control medium.

Application examples

- Temperature control of osmosis water in the temperature range of +4 °C to +84 °C.
- Cool-down and condensation of gases/vapors
- Cool-down of gear oil to temperatures down to -40 $^{\circ}\text{C},$ following by maintenance of the required temperature after self-heating

RECIRCULATING COOLERS

Environmentally-friendly and Economic

JULABO recirculating coolers can handle virtually any cooling requirements in laboratories or industrial environments. Their efficiency makes them an environmentally-friendly and economical alternative to cooling with tap water. Compact models from JULABO are ideal for placement on or underneath a lab bench. JULABO offers several powerful models with up to 20 kW of cooling capacity for applications in industrial environments.

Exclusive to JULABO instruments

JULABO recirculating coolers have no vents on the side panels. This means that you can save space by placing several instruments directly next to each other.

- Environmentally-friendly operation with low energy consumption
- Ergonomic design and easy operation
- Working temperature ranges from -25 °C to +130 °C
- Cooling capacity up to 20 kW
- Splash-proof keypad
- Large and bright LED display

- Alarm output (potential free contact) and RS232 interface on virtually all models
- Level indicator
- More powerful models with feed pressure indicator
- Circulating pumps with flow rates up to 80 l/min and pressure up to 6 bar
- Easy access filling
- Drain tap easily accessible
- No side vents, instruments can be placed right next to each other
- Air- and water-cooled models available
- High quality: All parts in contact with the bath fluid are made of stainless steel or high grade plastic (except FC-T models)

Cost savings (example calculation)

Cooling rotary evaporators is a common way to use recirculating coolers. For example, an average size 3-liter rotary evaporator requires approximately 175,000 liters of cooling water per year. This is almost as much as the yearly consumption of a four-person household! The calculation below is for cooling of two rotary evaporators:

Water is valuable and costly

The example calculation indicates cost savings of more than €1200 per year! Therefore, a JULABO recirculating cooler will pay for itself just after two years and make a contribution to environmental protection. Increased solvent recovery provides additional saving. The health of the lab employees benefits as well from ambient air with significantly less solvent content.

App	lication	parameters

Coolin	g water	inlet:
Coolin	g water	outlet:
Water	flow rate	te:

+15 °C
+17 °C
3 liters per minute

Cooling water costs

3 liters per minute
Operating time/year
Consumption per year
Costs per m ³
Costs per year

retrieved on 11/23/2016.

*Average prices in Baden Württemberg, Germany, August 25, 2016

http://www.statistik-bw.de/Presse/Pressemitteilungen/2016244,

= 180 liters per hour = 240 days x 8 hours= 346 m³ = 4 € * = 1384 €

Calculation of cooling capacity

. .

Р	$= \Delta T * c * m/t$
ΔT	= 2 °C (temperature difference)
с	= 4.18 kJ/kg * K (specific heat capacity of water)
m/t	= 0.05 l/sec (water flow rate)

The required cooling capacity is 418 W.

1.12

Costs for operating a recircu	lating cooler (F500)
Power consumption	= 0.6 kW
Operating time/year	= 240 days x 8 hours
Consumption per year	= 1152 kW
Costs per kWh	= 0.15 € **
Costs per vear	= 172.80 €

** Average price of electricity for an industrial company 2016;

http://www.bmwi.de/DE/Themen/Energie/Energiemarkt-und-Verbraucherinformationen/preise.html, retrieved on 11/23/2016

31

RECIRCULATING COOLERS

Individual and Efficient

Individual solutions for your application

JULABO is ready to help its customers by providing custom solutions for special requirements. JULABO recirculating coolers can be customized in the following ways:

Electric switch output

Some applications require an additional switch output in order to connect a solenoid valve or enable evaluation of a status signal, for example. In situations like these, JULABO can integrate the connection of your choice into the recirculating cooler. All we need to know is the signal level and the desired connector type.

Higher cooling capacity

Does your application require greater cooling capacity at a specific operating point? If so, please speak with a JULABO expert. Define the required cooling capacity and corresponding operating point. Upon request, you will receive exactly the instrument that you need.

Extraction

Quality control applications in laboratories for determination of fat content and extractable substances in food, animal feed, etc. used in the feed, animal nutrition, and dairy industries.

Extraction without consumption of cooling water, consistently reproducible condensation temperatures, without influence of ambient or seasonal temperature fluctuations.

Model	FL300 F250	FL601 F500	FL601	FL1201 F1000	FL1701 FL1201	FL1701	FL2503
Number of condensers	2	4	6	8	12	18	24

Julph

Distillation

Common applications in QA laboratories for determination of alcohol, ethanol, or carbolic levels. Primarily used in the food, beverage, animal feed, cosmetics, and detergent industries as well as in clarification plants.

Distillation without use of tap water, with more effective and reproducible cooling and consistent analysis conditions.

1.1	Model	FL1201 F1000	FL2503	FL2503	FL4003
	Number of distillation units	1	2	3	4

Evaporation and condensation

Commonly used in laboratories for synthetic chemistry, organic chemistry, scale-ups, or in R&D labs for pharmaceuticals, chemicals, cosmetics, and nutritional chemistry.

Evaporation and concentration without consumption of water, elevated efficiency even at cooling temperatures as low as -10 °C. Independent of external conditions.

Cooling and temperature control of 1 to 4 rotary evaporators at an evaporation temperature of +40 $^\circ\text{C}$

Model	FL300 F250	FL601 F500	FL1201 FL1203 F1000	FL1201 FL1203 F1000	FL1701 FL1703	FL2503 FL4003
Flask size	0.5 -1 liters	Up to	2 liters	Up to	4 liters	Up to 20 liters
Number of rotary evaporators	1	2	3-4	1	2	1-2

User **Benefits** and **Helpful Tips**

Adjustable pump capacity!

JULABO customers have several different options for controlling the pressure and flow rate in recirculating coolers:

1

The simplest option is a manually controlled, steplessly adjustable valve (e.g. accessory 8 970 454).

2

Models FL1203 and above have an adjustment wheel on the rear of the unit. The wheel provides for stepless pressure and flow control and diversion through the internal bypass.

3

SemiChill models include adjustable pumps.

Order at the same time! Shut-off valve for recirculating coolers

Adjustment wheel at rear

Electronically controllable pumps

Autostart function after power failure!

All JULABO recirculating coolers have an autostart function. In order to comply with industrial standards, the factory setting is "Off".

A simple key combination makes it easy for a JULABO user to activate the autostart function. Then the recirculating cooler will restart automatically after a power interruption.

Pump protection

Other units on the market contain pumps (e.g. PD pumps) that may not run up against a closed pump connection without causing damage to the pump.

But pumps used in JULABO units are equipped with technology to ensure that they will not be damaged even if the external liquid loop is interrupted by a kink in the tube, for example.

JULABO pumps work reliably even with back pressure

The Julabo advantages at a glance.

JULABO temperature control solutions – high-precision and speed

JULABO products include high-quality temperature control solutions to cover the temperature range from -95 °C to +400 °C.

Refrigerated Circulators

The JULABO Refrigerated Circulators are suitable for internal and external applications and can be used within the temperature range from -95 °C to +200 °C.

Water Baths and Shaking Water Baths

Water Baths and Shaking Water Baths from JULABO can be used for a variety of applications within the temperature range from +18 °C to +99.9 °C.

Heating Circulators

Heating Circulators are available in various designs including Heating Immersion Circulators, Open Heating Bath Circulators, or Heating Circulators and cover the temperature range from +20 °C to +300 °C.

Additional Products

In addition, the JULABO product portfolio offers instruments for special requirements such as Calibration Baths, Visco Baths, Beer Forcing Test Bath, Immersion / Flow-Through Coolers, Temperature Controllers and Refrigerators for Chemicals.

Highly Dynamic Temperature Control Systems

The Highly Dynamic Temperature Control Systems from JULABO can be used for demanding temperature applications ranging from -92 °C to +400 °C. The PRESTO series offers unique high performance specifications to meet these requirements.

Wireless Communication & Software Solutions

JULABO facilitates the automation of applications. The temperature control instruments can be comfortably controlled and monitored via PC.

Recirculating Coolers

JULABO Recirculating Coolers are highly efficient and therefore offer an environmentally friendly and economic alternative to tap water cooling in the temperature range from -25 °C to +130 °C.

Accessories

The extensive range of accessories for all our instruments allows flexible use of JULABO products in research and industry.

Comprehensive service and on-site support

JULABO takes pride in offering customers expert advice for pairing the proper JULABO temperature control solution to their specific application. JULABO service and support options include installation and calibration, equipment qualification documentation and application training. These invaluable services ensure customer confidence in the operation and maintenance of any JULABO unit.

Individual requirements – individual products

The wide range of JULABO offers a solution for almost any application. However, if a specific application needs more than a standard product can offer, the JULABO specialists will work out an individual solution with you.

JULABO. Quality.

Highest quality standards to ensure a long product life.

Green technology. Deliberately engineered with environmentally friendly

Satisfied customers.

materials and technologies.

11 subsidiaries and more than 100 partners worldwide guarantee fast and qualified JULABO support.

100% checked.

100 % testing. 100 % quality. Every JULABO product is shipped to customers after a successful final inspection.

Quick start. Individual JULABO consultation and comprehensive manuals at your disposal.

Services 24/7. Around the clock availability. You can find suitable accessories, data sheets, manuals, case studies and more at www.julabo.com.

Technical Specifications

Recirculating Coolers/Chillers

Model	Order No.	Working tempera- ture range	Display / resolution	Temperature control	Temperature stabillity	Heating capacity	Cooling of refrigeration unit		Co
		°C			°C	kW		+20	+10
AWC100	9 630 100	+20 +40	-	-	-	-	Air	0.55	0.3
F250	9 620 025	-10 +40	LED/0.1	PID1	±0.5	-	Air	0.25	0.22
F500	9 620 050	0 +40	LED/0.1	PID1	±0.5	-	Air	0.5	0.4
F1000	9 620 100	0 +40	LED/0.1	PID1	±0.5	-	Air	1	0.7
FL300	9 660 003	-20 +40	LED/0.1	PID1	±0.5	-	Air	0.3	0.25
FL601	9 661 006	-20 +40	LED/0.1	PID1	±0.5	-	Air	0.6	0.5
FL1201	9 661 012	-20 +40	LED/0.1	PID1	±0.5	-	Air	1.2	1
FL1203	9 663 012	-20 +40	LED/0.1	PID1	±0.5	-	Air	1.2	0.9
FL1701	9 661 017	-20 +40	LED/0.1	PID1	±0.5	-	Air	1.7	1.5
FL1703	9 663 017	-20 +40	LED/0.1	PID1	±0.5	-	Air	1.7	1.4
FLW1701	9 671 017	-20 +40	LED/0.1	PID1	±0.5	-	Water	1.7	1.5
FLW1703	9 673 017	-20 +40	LED/0.1	PID1	±0.5	-	Water	1.7	1.4
FL2503	9 663 025	-20 +40	LED/0.1	PID1	±0.5	-	Air	2.5	2.2
FL2506	9 666 025	-15 +40	LED/0.1	PID1	±0.5	-	Air	2.5	1.9
FL4003	9 663 040	-20 +40	LED/0.1	PID1	±0.5	-	Air	4	3.4
FL4006	9 666 040	-20 +40	LED/0.1	PID1	±0.5	-	Air	4	2.9
FLW2503	9 673 025	-20 +40	LED/0.1	PID1	±0.5	-	Water	2.7	2.5
FLW2506	9 676 025	-15 +40	LED/0.1	PID1	±0.5	-	Water	2.5	1.9
FLW4003	9 673 040	-20 +40	LED/0.1	PID1	±0.5	-	Water	4.3	3
FLW4006	9 676 040	-15 +40	LED/0.1	PID1	±0.5	-	Water	4	3
FL7006	9 666 070	-20 +40	LED/0.1	PID1	±0.5	-	Air	7	6.4
FL11006	9 666 110	-20 +40	LED/0.1	PID1	±0.5	-	Air	11	9
FL20006	9 666 200	-25 +40	LED/0.1	PID1	±0.5	-	Air	20	15
FLW7006	9 676 070	-20 +40	LED/0.1	PID1	±0.5	-	Water	7.4	-
FLW11006	9 676 110	-20 +40	LED/0.1	PID1	±0.5	-	Water	11.5	9
FLW20006	9 676 200	-25 +40	LED/0.1	PID1	±0.5	-	Water	20	15
FC600	9 600 060	-20 +80	LED/0.1	PID1	±0.2	1.2	Air	0.6	0.47
FC600S	9 600 063	-10 +80	LED/0.1	PID1	±0.2	1.2	Air	0.5	0.37
FC1200	9 600 120	-20 +80	LED/0.1	PID1	±0.2	1.2	Air	1.3	0.95
FC1200S	9 600 123	-15 +80	LED/0.1	PID1	±0.2	1.2	Air	1.2	0.85
FC1600	9 600 160	-20 +80	LED/0.1	PID1	±0.2	1.2	Air	1.65	1.25
FC1600S	9 600 163	-15 +80	LED/0.1	PID1	±0.2	1.2	Air	1.55	1.15
FC1200T	9 600 126	-10 +80	LED/0.1	PID3	±0.2	1.2	Air	1.1	0.75
FC1600T	9 600 166	-15 +80	LED/0.1	PID3	±0.2	1.2	Air	1.45	1.05
FCW600	9 601 060	-20 +80	LED/0.1	PID1	±0.2	1.2	Water	0.6	0.47
FCW600S	9 601 063	-10 +80	LED/0.1	PID1	±0.2	1.2	Water	0.5	0.37
FCW2500T	9 601 256	-25 +80	LED/0.1	PID3	±0.2	1.2	Water	2.5	2
SC2500a 1	9500025XXP3H0D0M0	+5 +35	Depending on electronics	PID1	±0.1	*	Air	2.5	2
SC2500w ¹	9500026XXP3H0D0M0	+5 +35	Depending on electronics	PID1	±0.1	*	Water	2.5	2
SC5000a ^{2,3}	9500050XXP3H0D0M0	+5 +35	Depending on electronics	PID1	±0.1	*	Air	5.0	3.8
SC5000w ^{2,3}	9500051XXP3H0D0M0	+5 +35	Depending on electronics	PID1	±0.1	*	Water	5.0	3.8
SC10000w ^{2,3}	9500101XXP3H0D0M0	+5 +35	Depending on electronics	PID1	±0.1	*	Water	10.0	7.5

¹⁾ with option H1: current consumption = plus 5 A ²⁾ with option H5: current consumption = plus 7 A ³⁾ with option H12: current consumption = plus 11 A ^{*)} with integrated heater: heating capacity H1 = 1 kW, H5 = 5 kW, H12 = 12 kW

oling capacity (Medium: II	(kW) at bath	temperature	(°C)			Pump		Pump connection/	Barbed fittings	Pressure
(incutain.)					Туре	Pressure	Flow rate	lineau		multator
+5	0	-5	-10	-20	⊗ Pressure pump	bar	l/min	male	ø	bar
0.18	-	-	-	-	\otimes	0.2	2.9	M10×1	8/10 mm	No
0.21	0.18	0.09	-	-	\otimes	0.35	15	M10×1	8/10 mm	No
0.3	0.25	-	-	-	\otimes	0.5	24	M16×1	8/12 mm	No
0.55	0.35	-	-	-	\otimes	1	23	M16×1	8/12 mm	No
0.22	0.2	0.18	0.15	0.1	\otimes	0.35	15	M16×1	8/12 mm	No
0.45	0.4	0.37	0.33	0.2	\otimes	1	23	M16×1	8/12 mm	No
1	0.9	0.75	0.6	0.3	\otimes	1	23	M16×1	8/12 mm	Yes
0.9	0.8	0.65	0.5	0.2	\otimes	0.5 3	40	G ¾"	3/4 "	Yes
1.3	1.1	0.98	0.85	0.4	\otimes	1	23	M16×1	8/12 mm	Yes
1.2	1	0.88	0.75	0.3	\otimes	0.5 3	40	G ¾″	3/4 "	Yes
1.3	1.1	0.98	0.85	0.4	\otimes	1	23	M16×1	8/12 mm	Yes
1.3	1	0.88	0.75	0.3	\otimes	0.5 3	40	G ¾″	3/4 "	Yes
1.9	1.5	1.35	1.2	0.55	\otimes	0.5 3	40	G ¾″	3/4 "	Yes
1.5	1	0.65	0.3	-	\otimes	0.5 6	60	G1 ¼"	1″	Yes
2.4	2.4	1.95	1.5	0.65	\otimes	0.5 3	40	G ¾″	3/4 "	Yes
2.4	1.9	1.4	0.9	0.05	\otimes	0.5 6	60	G1 ¼"	1″	Yes
2.1	1.7	1.35	1	0.4	\otimes	0.5 3	40	G ¾"	3/4 "	Yes
1.45	1	0.65	0.3	-	\otimes	0.5 6	60	G1 ¼"	1"	Yes
2.6	2.2	1.75	1.3	0.45	\otimes	0.5 3	40	G ¾″	3/4 "	Yes
1.35	1.7	1.2	0.7	-	\otimes	0.5 6	60	G1 ¼"	1"	Yes
5.8	5.1	4.05	3	1.55	\otimes	0.5 6	60	G1 ¼"	1"	Yes
8.3	7.5	6.25	5	3	\otimes	0.5 6	60	G1 ¼"	1"	Yes
12.5	10	8	6	2.5	\otimes	0.8 6	80	G1 ¼"	1"	Yes
7	7	4.3	3.1	1.3	\otimes	0.5 6	60	G1 ¼"	1"	Yes
8.2	7.3	6.05	4.8	2.7	\otimes	0.5 6	60	G1 ¼″	1"	Yes
13.5	12	9.5	7	3	\otimes	0.8 6	80	G1 ¼″	1"	Yes
0.4	0.33	0.27	0.21	-	\otimes	0.5	20	M16×1	8/12 mm	No
0.3	0.22	0.15	0.1	-	\otimes	1.2	22	M16×1	8/12 mm	No
0.75	0.6	0.49	0.37	-	\otimes	0.5	20	M16×1	8/12 mm	Yes
0.55	0.5	0.38	0.26	-	\otimes	1.2	22	M16×1	8/12 mm	Yes
1	0.8	0.63	0.47	-	\otimes	0.5	20	M16×1	8/12 mm	Yes
0.9	0.65	0.5	0.36	-	\otimes	1.2	22	M16×1	8/12 mm	Yes
0.55	0.4	0.28	0.15	-	\otimes	3.5	28	M16×1	8/12 mm	Yes
0.8	0.5	0.38	0.25	-	\otimes	3.5	28	M16×1	8/12 mm	Yes
0.4	0.33	0.27	0.21	-	\otimes	0.5	20	M16×1	8/12 mm	Yes
0.3	0.22	0.6	0.1	-	\otimes	1.2	22	M16×1	8/12 mm	Yes
1.8	2	1.4	0.8	0.25	\otimes	3.5	28	M16×1	8/12 mm	Yes
1.8	1.5	1.2	0.9	-	\otimes	3.5	33	NPT ¾"	3/4 "	Yes
1.8	1.5	1.2	0.9	-	\otimes	3.5	33	NPT ¾"	3/4 "	Yes
3.2	2.5	1.9	1.2	-	\otimes	3.5	33	NPT ¾"	3⁄4″	Yes
3.2	2.5	1.9	1.2	-	\otimes	3.5	33	NPT ¾"	3/4 "	Yes
6.3	5.0	3.8	2.5	-	\otimes	3.5	33	NPT 3/4"	3/4 "	Yes

Filling volume	Classification acc. to DIN 12876-1	IP Class acc. to	Power requirement	Noise level	RS232 Interface	Dimensions W×L×H	Weight net	Model
		IEC 60529						
liters			V/Hz/A	dBA		cm	kg	
0.9	I (NFL)	IP21	230/50-60/1	55	No	20×34×30	11	AWC100
1.7 2.6	I (NFL)	IP20	230/50/2	59	No	$24 \times 40 \times 52$	27	F250
5 7.5	I (NFL)	IP20	230/50/3	62	No	37.5×44×59	34	F500
7 9.5	I (NFL)	IP20	230/50/3	62	No	37.5×49×64	45	F1000
3 4.5	I (NFL)	IP21	230/50/3	55	Yes	$25 \times 50 \times 60$	39	FL300
5.5 8	I (NFL)	IP21	230/50/5	55	Yes	32 × 50 × 62	48	FL601
12 17	I (NFL)	IP21	230/50/7	61	Yes	$50 \times 76 \times 64$	76	FL1201
12 17	I (NFL)	IP21	230/50/12	61	Yes	$50 \times 76 \times 64$	91	FL1203
12 17	I (NFL)	IP21	230/50/10	62	Yes	$50 \times 76 \times 64$	85	FL1701
12 17	I (NFL)	IP21	230/50/12	63	Yes	$50 \times 76 \times 64$	91	FL1703
12 17	I (NFL)	IP21	230/50/10	59	Yes	$50 \times 76 \times 64$	82	FLW1701
12 17	I (NFL)	IP21	230/50/12	60	Yes	$50 \times 76 \times 64$	88	FLW1703
24 30	I (NFL)	IP21	230/50/11	64	Yes	60×76×115	146	FL2503
24 30	I (NFL)	IP21	230/50/14	64	Yes	60×76×115	158	FL2506
24 30	I (NFL)	IP21	3×400/50/8	67	Yes	60×76×115	148	FL4003
24 30	I (NFL)	IP21	3×400/50/12	67	Yes	60×76×115	157	FL4006
24 30	I (NFL)	IP21	230/50/11	61	Yes	60×76×115	143	FLW2503
24 30	I (NFL)	IP21	230/50/14	61	Yes	60×76×115	160	FLW2506
24 30	I (NFL)	IP21	3×400/50/8	65	Yes	60×76×115	143	FLW4003
24 30	I (NFL)	IP21	3×400/50/13	65	Yes	60×76×115	160	FLW4006
39 47	I (NFL)	IP21	3×400/50/14	74	Yes	78×85×148	252	FL7006
39 47	I (NFL)	IP21	3×400/50/17	74	Yes	78×85×148	248	FL11006
15 37	I (NFL)	IP21	3×400/50/18	73	Yes	95×115×161	360	FL20006
39 47	I (NFL)	IP21	3×400/50/14	74	Yes	78×85×148	220	FLW7006
39 47	I (NFL)	IP21	3×400/50/17	74	Yes	78×85×148	250	FLW11006
15 37	I (NFL)	IP21	3×400/50	69	Yes	95×115×161	360	FLW20006
6 8	III (FL)	IP21	230/50/8	51	Yes	35×54×49	48	FC600
6 8	III (FL)	IP21	230/50/10	54	Yes	35×54×49	52	FC600S
8 11	III (FL)	IP21	230/50/10	53	Yes	46×61×49	60	FC1200
8 11	III (FL)	IP21	230/50/12	57	Yes	46×61×49	66	FC1200S
8 11	III (FL)	IP21	230/50/11	53	Yes	46×61×49	65	FC1600
8 11	III (FL)	IP21	230/50/13	57	Yes	46×61×49	66	FC1600S
8 11	III (FL)	IP21	230/50/12	58	Yes	46×61×49	67	FC1200T
8 11	III (FL)	IP21	230/50/13	58	Yes	46×61×49	67	FC1600T
6 8	III (FL)	IP21	230/50/8	51	Yes	35 × 54 × 49	48	FCW600
6 8	III (FL)	IP21	230/50/10	54	Yes	35×54×49	52	FCW600S
8 11	III (FL)	IP21	230/50/12	53	Yes	46×61×49	74	FCW2500T
21 33	III (FL)	IP21	230/50/10	65	Yes	49×62×105	123	SC2500a *1
21 33	III (FL)	IP21	230/50/10	63	Yes	49×62×105	123	SC2500w *1
43 60	III (FL)	IP21	3×400/50/11	71	Yes	59×67×112	153	SC5000a *2,3
43 60	III (FL)	IP21	3×400/50/11	69	Yes	59×67×112	153	SC5000w *2,3
43 60	III (FL)	IP21	3×400/50/18	69	Yes	59×67×112	159	SC10000w *2,3

Unless otherwise indicated, all data relates to the operation at nominal voltage and frequency and +20 °C ambient temperature. Cooling capacity measured according to DIN 12876-2. Information regarding used refrigerants can be found at www.julabo.com

Voltage Options

Recirculating Coolers/Chillers

Model	Rated voltage (V)	Frequency (Hz)	Power requirement type	Voltage range (V)											
Single phase uni	ts:			1	00	12	0	140 	160)	180 	200	220	240	260
AWC100	115	60	1			•									
	230	50-60	1					_					•		
F250 F500	100	50-60	1		•										
F250	200	50-60	1									•			
F250, F500, F1000	115	60	1			•									
F250, F500,	230	50	1					_					•		
F1000	230	60	1								_				
	100	50-60	1		•	_		_				_			
FL300	115	60	1			•					_				
	230	50	1					_			_		•		
EI 1201	230	60	1			_			_		_		•		
FL1203 FL1701	115	60	1			•									
FL1703	230	50	1												
FL 2503	230	50				-+									
FLW2503 FL2506	230	50 60	1												
FLW2506	230	00	I	10			220						200		120
Three phase unit	s			181	0		230			0			380		430
FL4003 FLW4003	400	50	2											•	
FL4006 FLW4006	230	60	2				•								
FL7006 FLW7006	400	50	2											•	
FLW11006	230	60	2				•								
FUW20006	400	50	3											•	
FLWZUUUO	230	60	2				•								
Single phase uni	ts			110 		13 	0	150 		170 	190 	210 	2	30 	250
FC600, FC600S FC1200, FC1200S FC1600, FC1600S EC1200T EC1600T	230	50	1											•	
FCW600 FCW600S FCW2500T	230	60	1											•	
				190 I		20 	0	210 		220 	230 	240 	2	250 I	260
SC2500a	230	50	1								•				
SC2500w	208-230	60	1												
Three phase unit	s				180		230	2	80		330	380 		43	30
SC5000a,	400	50	2										٠		
SC10000w	208-230	60	3												
Power requirement												· · ·			
1 2		3													

Ν

PE

1

L2 🖷

L3 鱼

N ● PE ●

Lesoshoppe Sdn Bhd (Shah Alam) Elite Industrial Park, 12, Jalan Gitar 33/3, Seksyen 33, 40400 Shah Alam, Selangor Phone : +603-51212673

Lesoshoppe Sdn Bhd (Penang) Plot 85B, Lintang Bayan Lepas 9, Bayan Lepas Industrial Park, Phase 4, 11900 Penang. Phone : +604-6432080

> Lesoshoppe Sdn Bhd (Johor) No-19, Jalan Cantik 3, Taman Pelangi Indah, 81800 Ulu Tiram, Johor. Phone : +607-8619511

Lesoshoppe Sdn Bhd (Sarawak) 9th Floor, Bangunan Binamas, Jalan Padungan, 93100 Kuching, Sarawak. Phone : +6082-549721

Lesoshoppe Sdn Bhd (Sabah) No.1-2-1B, 2nd Floor, Block B, Kolam Centre Phase 2, Jalan Lintas, Luyang, 88300 Kota Kinabalu, Sabah Phone : +60168398627

Email: enquiry@ lesoshoppe.com

Julaba

37

ENGLISH

The all-new PURA[™] water baths. High quality. Practical. Durable.

Users place high demands on modern water baths in terms of functionality and reliability. Above all, a water bath must be trouble-free and low-maintenance in everyday operations. For this reason, JULABO does not only count on proven functions in the new PURA series of water baths, but particularly also on simple, intuitive operation and high material and component quality. The result is functional and high-quality water baths that facilitate regular temperature applications in the laboratory and, thanks to their durable design, can withstand permanent loads without any problems.

Advantages and main features

PURA[™]

Ease of use.

The controls on the front side are easy to reach and use.

Easy handling.

A frontally integrated drain screw allows clean, safe, and effortless emptying of the baths.

Easy cleaning.

PURA does not incorporate any interfering functional elements. The smooth surfaces can be cleaned quickly and without residue.

The all-new PURA[™] water baths. Intelligent design, full functionality.

In addition to their high quality, ease of use and easy-to-read display, PURA water baths offer a number of functions and features that enable efficient use in the laboratory. These include, among other things, an integrated timer and a specially designed outer edge, which automatically drains condensed fluid back into the bath. Another special feature is the included, removable platform. Sample containers, which are placed on the platform, are fully immersed and thus optimally tempered.

For a working temperature range¹⁾ from +18 °C to +99.9 °C

PURA water baths stand for innovative, simple, and safe working in the laboratory. All models (except PURA 4) come with an integrated drain screw for quick and clean draining of the baths. PURA water baths are flexible and can be easily transported through ergonomic side recessed grips. Non-slip rubber feet ensure a firm footing and more safety in the laboratory.

For reliable processes and consistent results, PURA water baths offer advantages such as:

- Ease of use
- Bright display
- Splash-proof protected power switch
- Built-in dry running protection
- Integrated drain screw (except PURA 4)
- No interfering elements in the bath
- Platform included as standard
- Integrated timer
- Non-slip rubber feet
- Ergonomic recessed grips

Heat-up time ²⁾ Medium: Water

		•••••••••••••••••••••••••••••••••••••••	
PURA [™] 4		PURA ^T 10	
Order No.	9 550 504	Order No.	9 550 510
Working temperature range °C ¹⁾	+18 +99.9	Working temperature range °C $^{1)}$	+18 +99.9
Temperature stability °C ²⁾	±0.15	Temperature stability °C $^{2)}$	±0.15
Heating capacity kW	0.5	Heating capacity kW	1.2
Bath opening/Bath depth cm	W×L/D 12×27/14	Bath opening/Bath depth cm	W×L/D 22 × 27 / 14
Number of test tube racks	1	Number of test tube racks	2
Filling volume liters	0.8 4.5	Filling volume liters	1.4 9.5
Weight kg	4.9	Weight kg	7
Dimensions cm	W×L×H 21 × 35 × 22	Dimensions cm	W×L×H 31 × 35 × 22

¹⁾ with counter-cooling/bath cover (accessories)

²⁾ with bath cover (accessories)

Cooling coil For working near ambient temperature (accessories).

Lift-up bath cover

Protects against water loss through evaporation (accessories).

9 550 514
+18 +99.9
±0.15
1.8
W×L/D 33 × 27 / 14
3
2 14
8.5
W×L×H 42 × 35 × 22

.....

PURA [®] 22		
Order No.	9 550 522	•
Working temperature range °C ¹⁾	+18 +99.9	8 9 9 0 0
Temperature stability $^{\circ}C^{2)}$	±0.15	0 0 0
Heating capacity kW	2	9 9 0
Bath opening/Bath depth cm	W×L/D 55 × 27 / 18	0 0 0
Number of test tube racks	5	•
Filling volume liters	3.4 25.5	0 0
Weight kg	11.5	8
Dimensions cm	$ W \times L \times H $	8

PURA [™] 30	
Order No.	9 550 530
Working temperature range °C $^{1)}$	+18 +99.9
Temperature stability °C $^{2)}$	±0.15
Heating capacity kW	2
Bath opening/Bath depth cm	W×L/D 77 × 27 / 18
Number of test tube racks	7
Filling volume liters	4.8 36
Weight kg	14.5
Dimensions cm	W×L×H 86 × 35 × 26

.

Accessories & technical data

Water bath protective media to prevent the formation of algae or bacteria and the descaling agent

Order No.	Description	Suitable for
8 940 006	Aqua Stabil, 6 bottles, 100 ml each	PURA
8 940 012	Aqua Stabil, 12 bottles, 100 ml each	PURA
9 940 200	Descaling agent, 1 liter	PURA

Hollow Balls to reduce heat loss, evaporation, odors, exposure to oxygen or light

Order No.	Description	Suitable for
8 970 010	Hollow balls, Polypropylene [®] , 20 mm Ø, 1000 pcs. (up to +100 °C, for water only)	PURA

Lift-up bath covers, transparent

Order No.	Description	Suitable for
9 970 580	Lift-up bath cover	PURA 4
9 970 581	Lift-up bath cover	PURA 10
9 970 582	Lift-up bath cover	PURA 14
9 970 583	Lift-up bath cover	PURA 22
9 970 584	Lift-up bath cover	PURA 30

Flat bath covers with sets of rings

Order No.	Description	Suitable for
9 970 570	Flat bath cover with 4 openings, 92 mm Ø	PURA 10
9 970 571	Flat bath cover with 1 opening, 190 mm Ø	PURA 10
9 970 572	Flat bath cover with 6 openings, 92 mm Ø	PURA 14
9 970 573	Flat bath cover with 8 openings, 92 mm Ø	PURA 22
9 970 574	Flat bath cover with 6 openings, 115 mm Ø	PURA 22
9 970 575	Flat bath cover with 2 openings, 190 mm Ø	PURA 22
9 970 576	Flat bath cover with 10 openings, 115 mm Ø	PURA 30
9 970 577	Flat bath cover with 3 openings, 190 mm Ø	PURA 30

Technical data

Model	Order No.	Working temperature range ¹⁾	Display	Resolution	Temperature Control	Temperature stability ²⁾	Heating capacity	Filling volume	Classification acc. to DIN 12876-1
		°C				°C	kW	liters	
PURA 4	9 550 504	+18 +99.9	LED	0.1	PID1	±0.15	0.5	0.8 4.5	I (NFL)
PURA 10	9 550 510	+18 +99.9	LED	0.1	PID1	±0.15	1.2	1.4 9.5	I (NFL)
PURA 14	9 550 514	+18 +99.9	LED	0.1	PID1	±0.15	1.8	2 14	I (NFL)
PURA 22	9 550 522	+18 +99.9	LED	0.1	PID1	±0.15	2	3.4 25.5	I (NFL)
PURA 30	9 550 530	+18 +99.9	LED	0.1	PID1	±0.15	2	4.8 36	I (NFL)

 $^{\mbox{\tiny 1)}}$ with counter-cooling/bath cover (accessories) $^{\mbox{\tiny 2)}}$ with bath cover (accessories)

Test tube racks made out of high grade plastic, up to +100 $^\circ\text{C}$

Order No.	Description	Suitable for
9 970 300	Test tube rack for 60 tubes 100 mm \times 16/17 mm Ø	PURA
9 970 301	Test tube rack for 90 tubes 75 mm $ imes$ 12/13 mm Ø	PURA
9 970 303	Test tube rack for 21 tubes, 30 mm	PURA

Cooling coil & liquid level/cooling set

Order No.	Description	Suitable for
9 970 534	Cooling coil	PURA 10, PURA 14
9 970 536	Cooling coil	PURA 22, PURA 30
8 970 415	Liquid level/cooling set	PURA 10, 14, 22, 30

Drain tap

Order No.	Description	Suitable for
8 970 453	Drain tap with tubing, 8 mm ID	PURA 10, 14, 22, 30

Dentistry accessories

Order No.	Description	Suitable for
9 970 331	Stents lifter	PURA 4
9 970 532	Stainless steel hygiene insert	PURA 4

Voltage Options

		Available mains voltages / heating capacity kW		
Model	Order No.	230 V 50-60 Hz	100-115 V 50-60 Hz	
PURA 4	9 550 504	0.5	0.38 0.5	
PURA 10	9 550 510	1.2	0.9 1.2	
PURA 14	9 550 514	1.8	0.98 1.3	
PURA 22	9 550 522	2	0.98 1.3	
PURA 30	9 550 530	2	0.98 1.3	

Power requirement	Permissible ambient temperature	Test tube racks	Usable bath opening W × L / D	Dimensions W × L × H	Dimensions with bath cover W × L × H	Weight net	Model
V / Hz / A	°C	items	cm	cm	cm	kg	
230/50-60/3	+5 +40	1	12 × 27 / 14	21 × 35 × 22	21 × 37 × 36	4.9	PURA 4
230/50-60/6	+5 +40	2	22 × 27 / 14	31 × 35 × 22	31 × 37 × 36	7	PURA 10
230/50-60/8	+5 +40	3	33 × 27 / 14	42 × 35 × 22	$42\times37\times36$	8.5	PURA 14
230/50-60/9	+5 +40	5	55 × 27 / 18	$64 \times 35 \times 26$	$64 \times 37 \times 40$	11.5	PURA 22
230/50-60/9	+5 +40	7	77 × 27 / 18	86 × 35 × 26	$86 \times 37 \times 40$	14.5	PURA 30

Unless otherwise indicated, all data relates to the operation at nominal voltage and frequency and +20 °C ambient temperature.

The **Juicbo** advantages at a glance.

JULABO temperature control solutions – high-precision and speed

JULABO products include high-quality temperature control solutions to cover the temperature range -95 °C to +400 °C.

Refrigerated Circulators

The JULABO Refrigerated Circulators are suitable for internal and external applications and can be used within the temperature range -95 °C to +200 °C.

Water Baths and Shaking Water Baths

JULABO Water Baths and Shaking Water Baths can be used for a variety of applications within the temperature range +18 $^\circ\rm C$ to +99.9 $^\circ\rm C.$

Heating Circulators

Heating Circulators are available in various designs including Heating Immersion Circulators, Open Heating Bath Circulators, or Heating Circulators and cover the temperature range +20 °C to +300 °C.

Additional Products

In addition, the JULABO product portfolio offers instruments for special requirements such as Calibration Baths, Visco Baths, Beer Forcing Test Baths, Immersion / Flow-Through Coolers, Temperature Controllers and Refrigerators for Chemicals.

Highly Dynamic Temperature Control Systems

The Highly Dynamic Temperature Control Systems from JULABO can be used for demanding temperature applications ranging from -92 °C to +400 °C. The PRESTO series offers unique high-performance specifications to meet these requirements.

Wireless Communication & Software Solutions

JULABO facilitates the automation of applications. The temperature control instruments can be comfortably controlled and monitored via PC.

Recirculating Coolers

JULABO Recirculating Coolers are highly efficient and therefore offer an environmentally friendly and economic alternative to tap water cooling in the temperature range -25 °C to +130 °C.

Accessories

The extensive range of instrument accessories ensures JULABO products are adaptable for research and industry use.

Comprehensive service and on-site support

JULABO takes pride in offering customers expert advice for pairing the proper JULABO temperature control solution to their specific application. JULABO service and support options include installation and calibration, equipment qualification documentation and application training. These invaluable services ensure customer confidence in the operation and maintenance of any JULABO unit.

Individual requirements - individual products

JULABO's wide product range offers a solution for almost any application. However, if a specific application needs more than a standard product can offer, the JULABO specialists will work out an individual solution with you.

JULABO. Quality. Highest quality standards to ensure a long product life.

Green technology.

Deliberately engineered with environmentally friendly materials and technologies.

Satisfied customers.

11 subsidiaries and more than 100 partners worldwide guarantee fast and qualified JULABO support.

100% checked.

100 % testing. 100 % quality. Every JULABO product is shipped to customers after a successful final inspection.

Quick start. Individual JULABO consultation and comprehensive manuals at your disposal.

Services 24/7. Around the clock availability. You can find suitable accessories, data sheets, manuals, case studies and more at www.julabo.com.

11

Lesoshoppe,com

Lesoshoppe Sdn Bhd (Shah Alam) Elite Industrial Park, 12, Jalan Gitar 33/3, Seksyen 33, 40400 Shah Alam, Selangor Phone : +603-51212673

Lesoshoppe Sdn Bhd (Penang) Plot 85B, Lintang Bayan Lepas 9, Bayan Lepas Industrial Park, Phase 4, 11900 Penang. Phone : +604-6432080

> Lesoshoppe Sdn Bhd (Johor) No-19, Jalan Cantik 3, Taman Pelangi Indah, 81800 Ulu Tiram, Johor. Phone : +607-8619511

Lesoshoppe Sdn Bhd (Sarawak) 9th Floor, Bangunan Binamas, Jalan Padungan, 93100 Kuching, Sarawak. Phone : +6082-549721

Lesoshoppe Sdn Bhd (Sabah) No.1-2-1B, 2nd Floor, Block B, Kolam Centre Phase 2, Jalan Lintas, Luyang, 88300 Kota Kinabalu, Sabah Phone : +60168398627

Email : enquiry@ lesoshoppe.com

SHAKING WATER BATHS

19.8

A

0

ENGLISH

Display

Easy to read

Large LED temperature display for actual value and setpoint (display resolution 0.1 °C)

675 6875

Several values at a glance Large Multi-Display (LED), easy to read across the room, for actual value and up to 3 setpoints, warning functions, high temperature cut-off, (display resolution 0.01/0.1 °C)

Operation

Clearly structured 100 111

Comfortable, splash-proof keypad for setpoint adjustment, high/low temperatures, timer and shaking frequency

Temperature Control

ATC

2

Precise

PID Temperature control with set control parameters, temperature stability ±0.02 ... ±0.2 °C

High measuring accuracy

'Absolute Temperature Calibration' for manual compensation of a temperature difference, 1-point calibration

Technical Features

		RS 232
--	--	--------

Serial connection RS232 interface for PC connection, e.g. for data communication

and recording of measured values

Warning & Safety Functions

Early warning system for high/low temperature Maximum safety for applications, optical and audible alarm, convertible to automated cut-off function

Julaba

3 20 101 63 89 63 CC

Only for non-flammable fluids Class I (NFL) according to DIN 12876-1

Shaking Water Baths

Intro	4
SW Series	6
Accessories	8
Advantages at a Glance	10
Technical Specifications	11

SHAKING WATER BATHS

HIGH QUALITY AND DURABLE

Experienced and Safe. Shaking Water Baths.

JULABO offers the shaking water baths of the SW series for routine applications, such as temperature applications for samples, incubation, material testing, corrosion tests, as well as temperature control applications of cultivations or temperature tests for food and beverages. All SW models are durable instruments of high quality. Their working temperature ranges from +20 °C to +99.9 °C qualifying them for a wide range of applications.

Practical Tip

The wide selection of accessories permits specific and individual set-up of all SW models for your temperature applications.

Advantages of shaking water baths

- Ease of use
- Overall splash water protection
- Integrated power switch
- Bright LED display
- Bath volumes from 8 to 20 liters
- Lift-up bath cover (accessory)
- High temperature stability of up to ± 0.02 °C
- Acoustic and optical low water level alarm
- Convenient bath drain
- Removable bottom plate or shaking insert
- Comprehensive selection of accessories for temperature control of samples
- Highest quality (all parts in contact with the bath fluid are made of stainless steel or high grade plastic)
- Warning and cut-off protection for high/low temperature
- Adjustable shaking frequencies from 20 ... 200 rpm
- integrated
- RS232 interface

The removable shaking insert prevents direct contact with the bath fluid. Carrier trays can be assembled comfortably outside the bath.

in the

Shaking Water Baths

Shaking Water Baths +20 °C ... +99.9 °C

Two models with shaking function and up to 20 liters filling volume

- Ease of use through keypad
- Bright LED display
- Overall splash water protection
- Dry-running protection with acoustic and optical alarm
- Adjustable shaking frequency from 20 bis 200 rpm
- Removable bottom plate and shaking insert

Please refer to the page 2 for a description of the icons shown above.

Julabo

Shaking Water Baths SW Series

for working temperatures from +20 °C to +99.9 °C

JULABO Shaking Water Baths provide numerous state-of-the-art features for common day-to-day laboratory tasks. For example: sloped edges keep the water in the stainless steel bath tank even when the bath lid is open.

- Overall splash water protection
- Low water-level warning and cut-off functions
- Integrated timer (0 ... 10 operating hours)User-friendly operation and consistent
- reproducibility - ATC 1-point calibration

SW22:

Temperature stability ± 0.2 °C, for general applications

SW23:

Temperature stability ± 0.02 °C, in addition with integrated circulating pump for best temperature stability and homogeneity

SW22

Order No.	9 550 322
Model	SW22
Working temperature range °C	+20 +99.9
Temperature stability °C	±0.2
Heating capacity kW	2
Shaking frequency rpm	20 200
Shaking stroke mm	15
Filling volume liters	8 20
Bath opening/ Bath depth cm	W×L/D 50 x 30 / 18
Dimensions cm cm	W×L×H* 70 x 35 x 26
	• • • • • • • • • • • • • • • •

SW23 Order No. 9 550 323 Model SW23 Working temperature +20 ... +99.9 range °C Temperature stability °C ±0.02 Heating capacity kW 2 Shaking frequency rpm 20 ... 200 Shaking stroke mm 15 Filling volume liters 8 ... 20 $W \times L/D$ Bath opening/ Bath depth cm 50 x 30 / 18 Dimensions $W \times L \times H^*$ cm 70 x 35 x 26

Heat-up time Bath fluid: water

Applications

Biochemical research, material testing, enzyme and tissue studies, homogenization, routine laboratory tasks, corrosion tests, fermentation, incubation, blood plasma thawing, temperature tests of food and beverages

Accessories

Order No.	Description	Suitable for
8 970 288	Lift-up Makrolon [®] cover (up to +80 °C), transparent	SW22, SW23
8 970 268	Lift-up stainless steel cover (up to +100 °C)	SW22, SW23

Hollow balls to reduce heat loss, evaporation, oxygen input, odors, action of light

Or	der No.	Description	Suitable for	
8 9	970 010	Hollow balls, Polypropylene [®] , 20 mm Ø, 1000 pcs (up to +100 °C, for water only)	SW22, SW23	

Cooling installation / Continuous water supply

Order No.	Description	Suitable for
8 970 415	Liquid level / cooling set	SW22, SW23
8 970 416	Cooling coil	SW22, SW23

All-purpose spring tray/Set of springs

Order No.	Description	Suitable for
8 970 630	All-purpose spring tray, pre-assembled for 11 Erlenmeyer flasks 250 ml, incl. set of springs for Erlenmeyer flasks 25 1000 ml	SW22, SW23
8 970 631	Set of springs consisting of 5 springs 190 mm and 12 springs 135 mm (for tray 8 970 630)	SW22, SW23

Standard carrier tray for Erlenmeyer flasks

Order No.	Description	Suitable for
8 970 360	for 45 flasks, 25 ml	SW22, SW23
8 970 361	for 32 flasks, 50 ml	SW22, SW23
8 970 362	for 18 flasks, 100 ml	SW22, SW23
8 970 363	for 15 flasks, 200 ml	SW22, SW23
8 970 364	for 11 flasks, 250-300 ml	SW22, SW23
8 970 365	for 8 flasks, 500 ml	SW22, SW23
8 970 366	for 5 flasks, 1000 ml	SW22, SW23

Carrier trays and spring clamps for Erlenmeyer flasks

Order No.	Description	Suitable for
8 970 620	Base tray for any spring clamps	SW22, SW23
8 970 601	Spring clamp for 10 ml flasks	SW22, SW23
8 970 602	Spring clamp for 25 ml flasks	SW22, SW23
8 970 603	Spring clamp for 50 ml flasks	SW22, SW23
8 970 604	Spring clamp for 100 ml flasks	SW22, SW23
8 970 606	Spring clamp for 200-250 ml flasks	SW22, SW23
8 970 607	Spring clamp for 300 ml flasks	SW22, SW23
8 970 608	Spring clamp for 500 ml flasks	SW22, SW23
8 970 609	Spring clamp for 1000 ml flasks	SW22, SW23

Carrier trays for test tube racks

Order No.	Description	Suitable for	
8 970 369	Base carrier tray for a maximum of 4 test tube racks	SW22, SW23	
Test tube ra	acks made of Polypropylene® (up to +80 °C)		
8 970 380	for 60 test tubes, 16/17 mm Ø	SW22, SW23	
8 970 381	for 90 test tubes, 12/13 mm Ø	SW22, SW23	
8 970 382	for 90 microliter tubes, 11/12 mm Ø	SW22, SW23	
8 970 383	for 21 test tubes, 30 mm Ø	SW22, SW23	
Test tube ra	acks made of stainless steel (up to +100 °C)		
8 970 344	for 50 test tubes, 16/17 mm Ø	SW22, SW23	
8 970 345	for 90 test tubes, 12/13 mm Ø	SW22, SW23	
8 970 346	for 90 microliter tubes, 11/12 mm Ø	SW22, SW23	
8 970 347	for 21 test tubes, 30 mm Ø	SW22, SW23	

Complete carrier trays with test tube racks (up to +80 °C)

	scription	Suitable for
8 960 440 for	240 test tubes, 16/17 mm Ø	SW22, SW23
8 960 441 for	360 test tubes, 12/13 mm Ø	SW22, SW23
8 960 442 for	360 microliter tubes, 30 x 11/12 mm Ø	SW22, SW23
8 960 443 for	84 test tubes, 30 mm Ø	SW22, SW23

Order No.	Description	Suitable for	
8 901 102	EasyTemp control software, free of charge at www.julabo.com	SW22, SW23	
8 901 105	EasyTemp Professional software, incl. USB dongle	SW22, SW23	
8 980 075	RS232 interface cable, 3 m, for direct PC connection	SW22, SW23	

Aqua Stabil water protective media to prevent formation of algae and bacteria and Descaling agent

Order No.	Description	Suitable for
8 940 006	Aqua Stabil, 6 bottles, 100 ml each	SW22, SW23
8 940 012	Aqua Stabil, 12 bottles, 100 ml each	SW22, SW23
9 940 200	Descaling agent, 1 liter	SW22, SW23

The **Juinbo** advantages at a glance.

JULABO temperature control – high-precision and speed

JULABO products include high-quality temperature control solutions to cover the temperature range from -95 °C to +400 °C.

Refrigerated Circulators

The JULABO refrigerated circulators are suitable for internal and external applications and can be used within the temperature range of -95 °C to +200 °C.

Water Baths and Shaking Water Baths

Water baths and shaking water baths from JULABO can be used for a variety of applications in the temperature range from +18 °C to +99.9 °C.

Heating Circulators

Heating circulators are available in various designs including Heating Immersion Circulators, Open Heating Bath Circulators, or Heating Circulators and cover the temperature range from +20 °C to +300 °C.

Additional Products

In addition, the JULABO product portfolio has equipment for special applications such as Calibration Baths, Visco Baths, Beer Forcing Test Bath, Immersion / Flow-Through Coolers, Temperature Controllers and Refrigerators for Chemicals.

Highly Dynamic Temperature Control Systems

The highly dynamic temperature control systems from JULABO can be used for demanding temperature applications ranging from -92 °C to +400 °C. The new PRESTO® line offers unique high performance specifications to meet these requirements.

Wireless Communication & Software Solutions

JULABO facilitates the automation of applications. The temperature control units can be comfortably controlled and monitored via PC.

Recirculating Coolers

JULABO recirculating coolers are highly efficient and therefore offer an environmentally friendly and economic alternative to tap water cooling in the range of -25 °C to +130 °C.

Accessories

The extensive range of accessories for all our instruments allows the flexible use of JULABO products in research and industry.

Comprehensive service and on-site support

JULABO takes pride in offering customers expert advice for pairing the proper JULABO temperature control solution to their specific application. JULABO service and support options include installation and calibration, equipment qualification documentation and application training. These invaluable services ensure customer confidence in the operation and maintenance of their JULABO unit.

Individual requirements - individual products

The wide range of JULABO offers a solution for almost any application. However, if a specific application needs more than a standard product is able to offer, the JULABO specialists will work out an individual solution with you.

Technical Specifications and Voltage Options

Model	Order No.	Working tempera- ture range °C	Setting/ display resolution	Temperature control	Temperature stability	Heating capacity	Bath open bath deptl W x L / D	ing/ Fill h vo	ing ume
			°C		°C	kW	cm	lite	rs
SW22	9 550 322	+20 +99.9	0.1	PID1	±0.2	2	50 x 30 / 18	8	. 20
SW23	9 550 323	+20 +99.9	0.1	PID1	±0.02	2	50 x 30 / 18	38	. 20
Shaking frequency	Shaking stroke	Classification acc. to DIN 12876-1	IP class acc. to IEC 60529	Power requirement	Dimensions without cover W x D x H	Dimensions with cover W x D x H	We	eight t	Model
rpm	mm			V / Hz / A	cm	cm	kg		
20 200	15	I (NFL)	IP21	230/50-60/10	70 x 35 x 26	70 x 35 x 43	19.	.4	SW22
20 200	15	I (NFL)	IP21	230/50-60/10	70 x 35 x 26	70 x 35 x 43	21.	.4	SW23

Voltage options for shaking water baths

Available voltage options / Heating capacity kW								
Model	Order No.	230 V	115 V					
		50-60 Hz	60 Hz					
SW22	9 550 322	2.0	1.0					
SW23	9 550 323	2.0	1.0					

Lesoshoppe.com

Lesoshoppe Sdn Bhd (Shah Alam) Elite Industrial Park, 12, Jalan Gitar 33/3, Seksyen 33, 40400 Shah Alam, Selangor Phone : +603-51212673

Lesoshoppe Sdn Bhd (Penang) Plot 85B, Lintang Bayan Lepas 9, Bayan Lepas Industrial Park, Phase 4, 11900 Penang. Phone : +604-6432080

> Lesoshoppe Sdn Bhd (Johor) No-19, Jalan Cantik 3, Taman Pelangi Indah, 81800 Ulu Tiram, Johor. Phone : +607-8619511

Lesoshoppe Sdn Bhd (Sarawak) 9th Floor, Bangunan Binamas, Jalan Padungan, 93100 Kuching, Sarawak. Phone : +6082-549721

Lesoshoppe Sdn Bhd (Sabah) No.1-2-1B, 2nd Floor, Block B, Kolam Centre Phase 2, Jalan Lintas, Luyang, 88300 Kota Kinabalu, Sabah Phone : +60168398627

Email : enquiry@ lesoshoppe.com